

DBAL Documentation

The Doctrine DBAL documentation is a reference guide to everything you need
to know about the database abstraction layer.

Getting Help

If this documentation is not helping to answer questions you have about the
Doctrine DBAL, don’t panic. You can get help from different sources:

	Slack chat room #dbal [https://www.doctrine-project.org/slack]

	On Stack Overflow [http://stackoverflow.com/questions/tagged/doctrine-dbal]

	The Doctrine Mailing List [http://groups.google.com/group/doctrine-user]

	Report a bug on GitHub [https://github.com/doctrine/dbal/issues].

Getting Started

The best way to get started is with the Introduction section
in the documentation. Use the sidebar to browse other documentation for the Doctrine PHP DBAL.

Index

 The Doctrine2 documentation is licensed under [CC BY-NC-SA 3.0](http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US)

Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN “AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

	Definitions

	“Adaptation” means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image (“synching”) will be considered an
Adaptation for the purpose of this License.

	“Collection” means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed
in Section 1(g) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

	“Distribute” means to make available to the public the original and
copies of the Work or Adaptation, as appropriate, through sale or
other transfer of ownership.

	“License Elements” means the following high-level license attributes
as selected by Licensor and indicated in the title of this License:
Attribution, Noncommercial, ShareAlike.

	“Licensor” means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

	“Original Author” means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

	“Work” means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

	“You” means an individual or entity exercising rights under this
License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

	“Publicly Perform” means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

	“Reproduce” means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

	to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections;

	to create and Reproduce Adaptations provided that any such Adaptation,
including any translation in any medium, takes reasonable steps to
clearly label, demarcate or otherwise identify that changes were made
to the original Work. For example, a translation could be marked “The
original work was translated from English to Spanish,” or a
modification could indicate “The original work has been modified.”;

	to Distribute and Publicly Perform the Work including as incorporated
in Collections; and,

	to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats. Subject to Section 8(f), all rights not expressly
granted by Licensor are hereby reserved, including but not limited to the
rights described in Section 4(e).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

	You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(d), as requested. If You create an
Adaptation, upon notice from any Licensor You must, to the extent
practicable, remove from the Adaptation any credit as required by
Section 4(d), as requested.

	You may Distribute or Publicly Perform an Adaptation only under: (i)
the terms of this License; (ii) a later version of this License with
the same License Elements as this License; (iii) a Creative Commons
jurisdiction license (either this or a later license version) that
contains the same License Elements as this License (e.g.,
Attribution-NonCommercial-ShareAlike 3.0 US) (“Applicable License”).
You must include a copy of, or the URI, for Applicable License with
every copy of each Adaptation You Distribute or Publicly Perform. You
may not offer or impose any terms on the Adaptation that restrict the
terms of the Applicable License or the ability of the recipient of the
Adaptation to exercise the rights granted to that recipient under the
terms of the Applicable License. You must keep intact all notices that
refer to the Applicable License and to the disclaimer of warranties
with every copy of the Work as included in the Adaptation You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Adaptation, You may not impose any effective technological
measures on the Adaptation that restrict the ability of a recipient of
the Adaptation from You to exercise the rights granted to that
recipient under the terms of the Applicable License. This Section 4(b)
applies to the Adaptation as incorporated in a Collection, but this
does not require the Collection apart from the Adaptation itself to be
made subject to the terms of the Applicable License.

	You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in con-nection with
the exchange of copyrighted works.

	If You Distribute, or Publicly Perform the Work or any Adaptations or
Collections, You must, unless a request has been made pursuant to
Section 4(a), keep intact all copyright notices for the Work and
provide, reasonable to the medium or means You are utilizing: (i) the
name of the Original Author (or pseudonym, if applicable) if supplied,
and/or if the Original Author and/or Licensor designate another party
or parties (e.g., a sponsor institute, publishing entity, journal) for
attribution (“Attribution Parties”) in Licensor’s copyright notice,
terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work;
and, (iv) consistent with Section 3(b), in the case of an Adaptation,
a credit identifying the use of the Work in the Adaptation (e.g.,
“French translation of the Work by Original Author,” or “Screenplay
based on original Work by Original Author”). The credit required by
this Section 4(d) may be implemented in any reasonable manner;
provided, however, that in the case of a Adaptation or Collection, at
a minimum such credit will appear, if a credit for all contributing
authors of the Adaptation or Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

	For the avoidance of doubt:

	Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

	Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(c) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

	Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted
under Section 4(c).

	Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Adaptations or Collections, You must not distort, mutilate, modify or
take other derogatory action in relation to the Work which would be
prejudicial to the Original Author’s honor or reputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any exercise
of the right granted in Section 3(b) of this License (the right to
make Adaptations) would be deemed to be a distortion, mutilation,
modification or other derogatory action prejudicial to the Original
Author’s honor and reputation, the Licensor will waive or not assert,
as appropriate, this Section, to the fullest extent permitted by the
applicable national law, to enable You to reasonably exercise Your
right under Section 3(b) of this License (right to make Adaptations)
but not otherwise.

	Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING AND TO THE
FULLEST EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR OFFERS THE WORK AS-IS
AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE
WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT
LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO THIS EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Termination

	This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Adaptations or Collections
from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

	Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as
stated above.

	Miscellaneous

	Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

	Each time You Distribute or Publicly Perform an Adaptation, Licensor
offers to the recipient a license to the original Work on the same
terms and conditions as the license granted to You under this License.

	If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

	No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

	This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

	The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark “Creative Commons” or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Doctrine SQL comments

In some occasions DBAL generates DC2Type SQL comments in columns of
the databases schemas that is maintained by Doctrine. These comments
have a functional purpose in DBAL.

DC2 is a shorthand for Doctrine 2, as opposed to Doctrine 1 [https://github.com/doctrine/doctrine1],
an ancestor that relied on the active record pattern [https://en.wikipedia.org/wiki/Active_record_pattern].

These comments are here to help with reverse engineering. Inside the
DBAL, the schema manager can leverage them to resolve ambiguities when
it comes to determining the correct DBAL type for a given column.

For instance: You are following a Database First approach [https://www.doctrine-project.org/projects/doctrine-orm/en/current/tutorials/getting-started-database.html],
and want to use GUIDs in your application while using a platform that does not have a native type for
this mapping.
By commenting columns that hold GUIDs with (DC2Type:guid), you can
let the DBAL know it is supposed to use Doctrine\DBAL\Types\GuidType
when dealing with that column.
When using reverse engineering tools, this can be used to generate
accurate information.
For instance, if you use Doctrine ORM, there is a reverse engineering example [https://www.doctrine-project.org/projects/doctrine-orm/en/current/reference/tools.html#reverse-engineering]
to show how to generate a proper mapping.

A table with such a column may have a declaration that looks as follows:

CREATE TABLE "movies" (
 uuid CHAR(36) NOT NULL, --(DC2Type:guid)
 title varchar(255) NOT NULL
 …,
 PRIMARY KEY(uuid)
)

In the past, these comments were also useful to avoid false positives
when diffing a schema created with the DBAL API with a schema
introspected from the database. Since platform-aware comparison was
introduced in 3.2.0 [https://www.doctrine-project.org/2021/11/26/dbal-3.2.0.html], this is
no longer the case. They must be kept in order to keep the
platform-unaware comparison APIs working though.

It is important to note that these comments are an implementation detail
of the DBAL and should not be relied upon by application code.

Implicit indexes

Ever noticed the DBAL creating indexes you did not remember asking for,
with names such as IDX_885DBAFAA76ED395? In this document, we will
distinguish three types of indexes:

	user-defined indexes
	indexes you did ask for

	DBAL-defined indexes
	indexes you did not ask for, created on your behalf by the DBAL

	RDBMS-defined indexes
	indexes you did not ask for, created on your behalf by the RDBMS

RDBMS-defined indexes can be created by some database platforms when you
create a foreign key: they will create an index on the referencing
table, using the referencing columns.

The rationale behind this is that these indexes improve performance, for
instance for checking that a delete operation can be performed on a
referenced table without violating the constraint in the referencing
table.

Here are some database platforms that are known to create indexes when
creating a foreign key:

	MySQL [https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html]

	MariaDB [https://mariadb.com/kb/en/foreign-keys]

These platforms can drop an existing implicit index once it is fulfilled
by a newly created user-defined index.

Some other will not do so, on grounds that such indexes are not always
needed, and can be created in many different ways. They instead leave
that responsibility to the user:

	PostgreSQL [https://stackoverflow.com/questions/970562/postgres-and-indexes-on-foreign-keys-and-primary-keys]

	SQLite [https://sqlite.org/foreignkeys.html#fk_indexes]

	SQL Server [https://stackoverflow.com/questions/836167/does-a-foreign-key-automatically-create-an-index]

Regardless of the behavior of the platform, the DBAL will create an
index for you and will automatically pick an index name that obeys
string length constraints of the platform you are using. That way,
differences between platforms are reduced because you always end up with
an index.

This is a detail, but these indexes will be prefixed with IDX_, and
typically look like this:

CREATE INDEX IDX_885DBAFAA76ED395 ON posts (user_id)

In the case of MariaDB and MySQL, the creation of that DBAL-defined
index will result in the RDBMS-defined index being dropped.

You can still explicitly create such indexes yourself, and the DBAL will
notice when your index fulfills the indexing and constraint needs of the
implicit index it would create, and will refrain from doing so, much
like some platforms drop indexes that are redundant as explained above.

Architecture

The DBAL consists of two layers: drivers and a wrapper. Each layer
is mainly defined in terms of 3 components: Connection,
Statement and Result.
A Doctrine\DBAL\Connection wraps a Doctrine\DBAL\Driver\Connection,
a Doctrine\DBAL\Statement wraps a Doctrine\DBAL\Driver\Statement
and a Doctrine\DBAL\Result wraps a Doctrine\DBAL\Driver\Result.

Doctrine\DBAL\Driver\Connection, Doctrine\DBAL\Driver\Statement
and Doctrine\DBAL\Driver\Result are just interfaces.
These interfaces are implemented by concrete drivers.

Apart from the three main components, a DBAL driver should also provide
an implementation of the Doctrine\DBAL\Driver interface that
has two primary purposes:

	Translate the DBAL connection parameters to the ones specific
to the driver’s connection class.

	Act as a factory of other driver-specific components like
platform, schema manager and exception converter.

The driver components can be decorated using the four driver interfaces in
order to add driver-independent functionality like logging or profiling. Those
decorators are configured as a middleware.

The wrapper components Connection, Statement and Result are the
objects that the application usually interacts with directly. They wrap the
middleware stack as well as the driver at the bottom of that stack.

The DBAL is separated into several different packages that
separate responsibilities of the different RDBMS layers.

Drivers

The drivers abstract a PHP specific database API by enforcing four
interfaces:

	Doctrine\DBAL\Driver

	Doctrine\DBAL\Driver\Connection

	Doctrine\DBAL\Driver\Statement

	Doctrine\DBAL\Driver\Result

Middlewares

A middleware sits in the middle between the wrapper components and the driver.
By implementing the Doctrine\DBAL\Driver\Middleware, it decorates the
Driver component of either the actual driver or a lower middleware. If
necessary, the middleware might also decorate Connection, Statement
and Result.

An example for a middleware implementation is
Doctrine\DBAL\Logging\Middleware which implements logging capabilities
on top of a driver.

Platforms

The platforms abstract the generation of queries and which database
features a platform supports. The
\Doctrine\DBAL\Platforms\AbstractPlatform defines the common
denominator of what a database platform has to publish to the
userland, to be fully supportable by Doctrine. This includes the
SchemaTool, Transaction Isolation and many other features. The
Database platform for MySQL for example can be used by multiple
MySQL extensions: pdo_mysql and mysqli.

Logging

The logging holds the interface and some implementations for
debugging of Doctrine SQL query execution during a request.

Schema

The schema offers an API for each database platform to execute DDL
statements against your platform or retrieve metadata about it. It
also holds the Schema Abstraction Layer which is used by the
different Schema Management facilities of Doctrine DBAL and ORM.

Types

The types offer an abstraction layer for the converting and
generation of types between Databases and PHP. Doctrine comes
bundled with some common types but offers the ability for
developers to define custom types or extend existing ones easily.

Caching

A Doctrine\DBAL\Connection can automatically cache result sets. The
feature is optional though, and by default, no result set is cached.

To use the result cache, there are three mandatory steps:

	Configure a global result cache, or provide one at query time.

	Provide a cache profile for the result set you want to cache when
making a query.

Configuring the result cache

Any instance of Psr\Cache\CacheItemPoolInterface can be used as a result
cache and can be set on the configuration object (optionally it can also
be passed at query time):

<?php
$cache = new \Symfony\Component\Cache\Adapter\ArrayAdapter();
$config = $conn->getConfiguration();
$config->setResultCache($cache);

Note that this documentation uses Symfony Cache in all examples. Any other cache implementation
that follows the PSR-6 standard can be used instead.

Providing a cache profile

To get the result set of a query cached, it is necessary to pass a
Doctrine\DBAL\Cache\QueryCacheProfile instance to the
executeQuery() or executeCacheQuery() methods. The difference
between these two methods is that the former has the cache profile as an
optional argument, whereas it is required when calling the latter:

<?php
$stmt = $conn->executeQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));
$stmt = $conn->executeCacheQuery($query, $params, $types, new QueryCacheProfile(0, "some key"));

As stated before, it is also possible to pass in a
Psr\Cache\CacheItemPoolInterface instance into the constructor of
Doctrine\DBAL\Cache\QueryCacheProfile in which case it overrides the
default cache instance:

<?php
$cache = new \Symfony\Component\Cache\Adapter\FilesystemAdapter();
new QueryCacheProfile(0, "some key", $cache);

CLI Tools

Doctrine DBAL bundles commands that can be integrated into a Symfony console application.

When you use DBAL inside a full-stack Symfony application, DoctrineBundle already integrates those into your
application’s console.

There is also a standalone console runner available. To use it, make sure that Symfony console is installed:

composer require symfony/console

With a small PHP script, you can bootstrap the console tools:

#!/usr/bin/env php
<?php

use Doctrine\DBAL\DriverManager;
use Doctrine\DBAL\Tools\Console\ConnectionProvider\SingleConnectionProvider;
use Doctrine\DBAL\Tools\Console\ConsoleRunner;

// The path to Composer's autoloader
// Adjust it according to your project's structure
require __DIR__ . '/vendor/autoload.php';

$connection = DriverManager::getConnection([
 // Configure your DBAL connection here.
]);

ConsoleRunner::run(
 new SingleConnectionProvider($connection)
);

If your application uses more than one connection, write your own implementation of ConnectionProvider and use it
instead of the SingleConnectionProvider class.

Configuration

Getting a Connection

You can get a DBAL Connection through the
Doctrine\DBAL\DriverManager class.

<?php
//..
$connectionParams = [
 'dbname' => 'mydb',
 'user' => 'user',
 'password' => 'secret',
 'host' => 'localhost',
 'driver' => 'pdo_mysql',
];
$conn = \Doctrine\DBAL\DriverManager::getConnection($connectionParams);

Or, using the simpler URL form:

<?php
//..
$connectionParams = [
 'url' => 'mysql://user:secret@localhost/mydb',
];
$conn = \Doctrine\DBAL\DriverManager::getConnection($connectionParams);

The DriverManager returns an instance of
Doctrine\DBAL\Connection which is a wrapper around the
underlying driver connection (which is often a PDO instance).

The following sections describe the available connection parameters
in detail.

Connecting using a URL

The easiest way to specify commonly used connection parameters is
using a database URL. The scheme is used to specify a driver, the
user and password in the URL encode user and password for the
connection, followed by the host and port parts (the “authority”).
The path after the authority part represents the name of the
database, sans the leading slash. Any query parameters are used as
additional connection parameters.

The scheme names representing the drivers are either the regular
driver names (see below) with any underscores in their name replaced
with a hyphen (to make them legal in URL scheme names), or one of the
following simplified driver names that serve as aliases:

	db2: alias for ibm_db2

	mssql: alias for pdo_sqlsrv

	mysql/mysql2: alias for pdo_mysql

	pgsql/postgres/postgresql: alias for pdo_pgsql

	sqlite/sqlite3: alias for pdo_sqlite

For example, to connect to a “foo” MySQL DB using the pdo_mysql
driver on localhost port 4486 with the “charset” option set to utf8mb4,
you would use the following URL:

mysql://localhost:4486/foo?charset=utf8mb4

This is identical to the following connection string using the
full driver name:

pdo-mysql://localhost:4486/foo?charset=utf8mb4

In the example above, mind the dashes instead of the
underscores in the URL scheme.

For connecting to an SQLite database, the authority portion of the
URL is obviously irrelevant and thus can be omitted. The path part
of the URL is, like for all other drivers, stripped of its leading
slash, resulting in a relative file name for the database:

sqlite:///somedb.sqlite

This would access somedb.sqlite in the current working directory
and is identical to the following:

sqlite://ignored:ignored@ignored:1234/somedb.sqlite

To specify an absolute file path, e.g. /usr/local/var/db.sqlite,
simply use that as the database name, which results in two leading
slashes for the path part of the URL, and four slashes in total after
the URL scheme name and its following colon:

sqlite:////usr/local/var/db.sqlite

Which is, again, identical to supplying ignored user/pass/authority:

sqlite://notused:inthis@case//usr/local/var/db.sqlite

To connect to an in-memory SQLite instance, use :memory: as the
database name:

sqlite:///:memory:

Note

Any information extracted from the URL overwrites existing values
for the parameter in question, but the rest of the information
is merged together. You could, for example, have a URL without
the charset setting in the query string, and then add a
charset connection parameter next to url, to provide a
default value in case the URL doesn’t contain a charset value.

Driver

The driver specifies the actual implementations of the DBAL
interfaces to use. It can be configured in one of three ways:

	driver: The built-in driver implementation to use. The
following drivers are currently available:

	pdo_mysql: A MySQL driver that uses the pdo_mysql PDO
extension.

	mysqli: A MySQL driver that uses the mysqli extension.

	pdo_sqlite: An SQLite driver that uses the pdo_sqlite PDO
extension.

	pdo_pgsql: A PostgreSQL driver that uses the pdo_pgsql PDO
extension.

	pdo_oci: An Oracle driver that uses the pdo_oci PDO
extension.
Note that this driver caused problems in our tests. Prefer the oci8 driver if possible.

	pdo_sqlsrv: A Microsoft SQL Server driver that uses pdo_sqlsrv PDO

	sqlsrv: A Microsoft SQL Server driver that uses the sqlsrv PHP extension.

	oci8: An Oracle driver that uses the oci8 PHP extension.

	driverClass: Specifies a custom driver implementation if no
‘driver’ is specified. This allows the use of custom drivers that
are not part of the Doctrine DBAL itself.

Wrapper Class

By default a Doctrine\DBAL\Connection is wrapped around a
driver Connection. The wrapperClass option allows
specifying a custom wrapper implementation to use, however, a custom
wrapper class must be a subclass of Doctrine\DBAL\Connection.

Connection Details

The connection details identify the database to connect to as well
as the credentials to use. The connection details can differ
depending on the used driver. The following sections describe the
options recognized by each built-in driver.

pdo_sqlite

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	path (string): The filesystem path to the database file.
Mutually exclusive with memory. path takes precedence.

	memory (boolean): True if the SQLite database should be
in-memory (non-persistent). Mutually exclusive with path.
path takes precedence.

pdo_mysql

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	unix_socket (string): Name of the socket used to connect to
the database.

	charset (string): The charset used when connecting to the
database.

mysqli

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	unix_socket (string): Name of the socket used to connect to
the database.

	charset (string): The charset used when connecting to the
database.

	ssl_key (string): The path name to the key file to use for SSL encryption.

	ssl_cert (string): The path name to the certificate file to use for SSL encryption.

	ssl_ca (string): The path name to the certificate authority file to use for SSL encryption.

	ssl_capath (string): The pathname to a directory that contains trusted SSL CA certificates in PEM format.

	ssl_cipher (string): A list of allowable ciphers to use for SSL encryption.

	driverOptions Any supported flags for mysqli found on http://www.php.net/manual/en/mysqli.real-connect.php

pdo_pgsql

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	charset (string): The charset used when connecting to the
database.

	default_dbname (string): Override the default database (postgres)
to connect to.

	sslmode (string): Determines whether or with what priority
a SSL TCP/IP connection will be negotiated with the server.
See the list of available modes:
https://www.postgresql.org/docs/9.4/static/libpq-connect.html#LIBPQ-CONNECT-SSLMODE

	sslrootcert (string): specifies the name of a file containing
SSL certificate authority (CA) certificate(s). If the file exists,
the server’s certificate will be verified to be signed by one of these
authorities.
See https://www.postgresql.org/docs/9.4/static/libpq-connect.html#LIBPQ-CONNECT-SSLROOTCERT

	sslcert (string): specifies the filename of the client SSL certificate.
See https://www.postgresql.org/docs/9.4/static/libpq-connect.html#LIBPQ-CONNECT-SSLCERT

	sslkey (string): specifies the location for the secret key used for the
client certificate.
See https://www.postgresql.org/docs/9.4/static/libpq-connect.html#LIBPQ-CONNECT-SSLKEY

	sslcrl (string): specifies the filename of the SSL certificate
revocation list (CRL).
See https://www.postgresql.org/docs/9.4/static/libpq-connect.html#LIBPQ-CONNECT-SSLCRL

	application_name (string): Name of the application that is
connecting to database. Optional. It will be displayed at pg_stat_activity.

PostgreSQL behaves differently with regard to booleans when you use
PDO::ATTR_EMULATE_PREPARES or not. To switch from using 'true'
and 'false' as strings you can change to integers by using:
$conn->getDatabasePlatform()->setUseBooleanTrueFalseStrings($flag).

pdo_oci / oci8

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

	servicename (string): Optional name by which clients can
connect to the database instance. Will be used as Oracle’s
SID connection parameter if given and defaults to Doctrine’s
dbname connection parameter value.

	service (boolean): Whether to use Oracle’s SERVICE_NAME
connection parameter in favour of SID when connecting. The
value for this will be read from Doctrine’s servicename if
given, dbname otherwise.

	pooled (boolean): Whether to enable database resident
connection pooling.

	charset (string): The charset used when connecting to the
database.

	instancename (string): Optional parameter, complete whether to
add the INSTANCE_NAME parameter in the connection. It is generally used
to connect to an Oracle RAC server to select the name of a particular instance.

	connectstring (string): Complete Easy Connect connection descriptor,
see https://docs.oracle.com/database/121/NETAG/naming.htm. When using this option,
you will still need to provide the user and password parameters, but the other
parameters will no longer be used. Note that when using this parameter, the getHost
and getPort methods from Doctrine\DBAL\Connection will no longer function as expected.

	persistent (boolean): Whether to establish a persistent connection.

pdo_sqlsrv / sqlsrv

	user (string): Username to use when connecting to the
database.

	password (string): Password to use when connecting to the
database.

	host (string): Hostname of the database to connect to.

	port (integer): Port of the database to connect to.

	dbname (string): Name of the database/schema to connect to.

Automatic platform version detection

Doctrine ships with different database platform implementations for some vendors
to support version specific features, dialect and behaviour.
As of Doctrine DBAL 2.5 the appropriate platform implementation for the underlying
database server version can be detected at runtime automatically for nearly all drivers.
Before 2.5 you had to configure Doctrine to use a certain platform implementation
explicitly with the platform connection parameter (see section below).
Otherwise Doctrine always used a default platform implementation. For example if
your application was backed by a SQL Server 2012 database, Doctrine would still use
the SQL Server 2008 platform implementation as it is the default, unless you told
Doctrine explicitly to use the SQL Server 2012 implementation.

The following drivers support automatic database platform detection out of the box
without any extra configuration required:

	pdo_mysql

	mysqli

	pdo_pgsql

	pdo_sqlsrv

	sqlsrv

Some drivers cannot provide the version of the underlying database server without
having to query for it explicitly.

If you still want to tell Doctrine which database server version you are using in
order to choose the appropriate platform implementation, you can pass the
serverVersion option with a vendor specific version string that matches the
database server version you are using.
You can also pass this option if you want to disable automatic database platform
detection for a driver that natively supports it and choose the platform version
implementation explicitly.

If you are running a MariaDB database, you should prefix the serverVersion
with mariadb- (ex: mariadb-10.2.12).

Custom Platform

Each built-in driver uses a default implementation of
Doctrine\DBAL\Platforms\AbstractPlatform. If you wish to use a
customized or custom implementation, you can pass a precreated
instance in the platform option.

Custom Driver Options

The driverOptions option allows to pass arbitrary options
through to the driver. This is equivalent to the fourth argument of
the PDO constructor [http://php.net/manual/en/pdo.construct.php].

Data Retrieval And Manipulation

Data Retrieval

Using a database implies retrieval of data. It is the primary use-case of a database.
For this purpose each database vendor exposes a Client API that can be integrated into
programming languages. PHP has a generic abstraction layer for this
kind of API called PDO (PHP Data Objects). However because of disagreements
between the PHP community there are often native extensions for each database
vendor that are much more maintained (OCI8 for example).

Doctrine DBAL API integrates native extensions. If you already have an open connection
through the Doctrine\DBAL\DriverManager::getConnection() method you
can start using this API for data retrieval easily.

Start writing an SQL query and pass it to the query() method of your
connection:

<?php
use Doctrine\DBAL\DriverManager;

$conn = DriverManager::getConnection($params, $config);

$sql = "SELECT * FROM articles";
$stmt = $conn->query($sql); // Simple, but has several drawbacks

The query method executes the SQL and returns a database statement object.
A database statement object can be iterated to retrieve all the rows that matched
the query until there are no more rows:

<?php

while (($row = $stmt->fetchAssociative()) !== false) {
 echo $row['headline'];
}

The query method is the most simple one for fetching data, but it also has
several drawbacks:

	There is no way to add dynamic parameters to the SQL query without modifying
$sql itself. This can easily lead to a category of security
holes called SQL injection, where a third party can modify the SQL executed
and even execute their own queries through clever exploiting of the security hole.

	Quoting dynamic parameters for an SQL query is tedious work and requires lots
of use of the Doctrine\DBAL\Connection#quote() method, which makes the
original SQL query hard to read/understand.

	Databases optimize SQL queries before they are executed. Using the query method
you will trigger the optimization process over and over again, although
it could re-use this information easily using a technique called prepared statements.

These three arguments and some more technical details hopefully convinced you to investigate
prepared statements for accessing your database.

Dynamic Parameters and Prepared Statements

Consider the previous query, now parameterized to fetch only a single article by id.
Using ext/mysql (still the primary choice of MySQL access for many developers) you had to escape
every value passed into the query using mysql_real_escape_string() to avoid SQL injection:

<?php
$sql = "SELECT * FROM articles WHERE id = '" . mysql_real_escape_string($id, $link) . "'";
$rs = mysql_query($sql);

If you start adding more and more parameters to a query (for example in UPDATE or INSERT statements)
this approach might lead to complex to maintain SQL queries. The reason is simple, the actual
SQL query is not clearly separated from the input parameters. Prepared statements separate
these two concepts by requiring the developer to add placeholders to the SQL query (prepare) which
are then replaced by their actual values in a second step (execute).

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM articles WHERE id = ?";
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, $id);
$resultSet = $stmt->executeQuery();

Placeholders in prepared statements are either simple positional question marks (?) or named labels starting with
a colon (e.g. :name1). You cannot mix the positional and the named approach. You have to bind a parameter
to each placeholder.

The approach using question marks is called positional, because the values are bound in order from left to right
to any question mark found in the previously prepared SQL query. That is why you specify the
position of the variable to bind into the bindValue() method:

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM articles WHERE id = ? AND status = ?";
$stmt = $conn->prepare($sql);
$stmt->bindValue(1, $id);
$stmt->bindValue(2, $status);
$resultSet = $stmt->executeQuery();

Named parameters have the advantage that their labels can be re-used and only need to be bound once:

<?php
// $conn instanceof Doctrine\DBAL\Connection

$sql = "SELECT * FROM users WHERE name = :name OR username = :name";
$stmt = $conn->prepare($sql);
$stmt->bindValue("name", $name);
$resultSet = $stmt->executeQuery();

The following section describes the API of Doctrine DBAL with regard to prepared statements.

Note

Support for positional and named prepared statements varies between the different
database extensions. PDO implements its own client side parser so that both approaches
are feasible for all PDO drivers. OCI8/Oracle only supports named parameters, but
Doctrine implements a client side parser to allow positional parameters also.

Using Prepared Statements

There are three low-level methods on Doctrine\DBAL\Connection that allow you to
use prepared statements:

	prepare($sql) - Create a prepared statement of the type Doctrine\DBAL\Statement.
Using this method is preferred if you want to re-use the statement to execute several
queries with the same SQL statement only with different parameters.

	executeQuery($sql, $params, $types) - Create a prepared statement for the passed
SQL query, bind the given params with their binding types and execute the query.
This method returns the executed prepared statement for iteration and is useful
for SELECT statements.

	executeStatement($sql, $params, $types) - Create a prepared statement for the passed
SQL query, bind the given params with their binding types and execute the query.
This method returns the number of affected rows by the executed query and is useful
for UPDATE, DELETE and INSERT statements.

A simple usage of prepare was shown in the previous section, however it is useful to
dig into the features of a Doctrine\DBAL\Statement a little bit more. There are essentially
two different types of methods available on a statement. Methods for binding parameters and types
and methods to retrieve data from a statement.

	bindValue($pos, $value, $type) - Bind a given value to the positional or named parameter
in the prepared statement.

	bindParam($pos, &$param, $type) - Bind a given reference to the positional or
named parameter in the prepared statement.

If you are finished with binding parameters you have to call executeQuery() on the statement,
which will trigger a query to the database. After the query is finished, a Doctrine\DBAL\Result
instance is returned and you can access the results of this query using the fetch API of the result:

	fetchNumeric() - Retrieves the next row from the statement or false if there are none.
The row is fetched as an array with numeric keys where the columns appear in the same order as
they were specified in the executed SELECT query.
Moves the pointer forward one row, so that consecutive calls will always return the next row.

	fetchAssociative() - Retrieves the next row from the statement or false if there are none.
The row is fetched as an associative array where the keys represent the column names as
specified in the executed SELECT query.
Moves the pointer forward one row, so that consecutive calls will always return the next row.

	fetchOne() - Retrieves the value of the first column of the next row from the statement
or false if there are none.
Moves the pointer forward one row, so that consecutive calls will always return the next row.

	fetchAllNumeric() - Retrieves all rows from the statement as arrays with numeric keys.

	fetchAllAssociative() - Retrieves all rows from the statement as associative arrays.

	fetchFirstColumn() - Retrieves the value of the first column of all rows.

The fetch API of a prepared statement obviously works only for SELECT queries. If you want to
execute a statement that does not yield a result set, like INSERT, UPDATE or DELETE
for instance, you might want to call executeStatement() instead of executeQuery().

If you find it tedious to write all the prepared statement code you can alternatively use
the Doctrine\DBAL\Connection#executeQuery() and Doctrine\DBAL\Connection#executeStatement()
methods. See the API section below on details how to use them.

Additionally there are lots of convenience methods for data-retrieval and manipulation
on the Connection, which are all described in the API section below.

Binding Types

Besides Doctrine\DBAL\ParameterType constants, you
can make use of two very powerful additional features.

DoctrineDBALTypes Conversion

If you don’t specify an integer (through one of Doctrine\DBAL\ParameterType constants) to
any of the parameter binding methods but a string, Doctrine DBAL will
ask the type abstraction layer to convert the passed value from
its PHP to a database representation. This way you can pass \DateTime
instances to a prepared statement and have Doctrine convert them
to the appropriate vendors database format:

<?php
$date = new \DateTime("2011-03-05 14:00:21");
$stmt = $conn->prepare("SELECT * FROM articles WHERE publish_date > ?");
$stmt->bindValue(1, $date, "datetime");
$resultSet = $stmt->executeQuery();

If you take a look at Doctrine\DBAL\Types\DateTimeType you will see that
parts of the conversion are delegated to a method on the current database platform,
which means this code works independent of the database you are using.

Note

Be aware this type conversion only works with Statement#bindValue(),
Connection#executeQuery() and Connection#executeStatement(). It
is not supported to pass a doctrine type name to Statement#bindParam(),
because this would not work with binding by reference.

List of Parameters Conversion

One rather annoying bit of missing functionality in SQL is the support for lists of parameters.
You cannot bind an array of values into a single prepared statement parameter. Consider
the following very common SQL statement:

SELECT * FROM articles WHERE id IN (?)

Since you are using an IN expression you would really like to use it in the following way
(and I guess everybody has tried to do this once in his life, before realizing it doesn’t work):

<?php
$stmt = $conn->prepare('SELECT * FROM articles WHERE id IN (?)');
// THIS WILL NOT WORK:
$stmt->bindValue(1, [1, 2, 3, 4, 5, 6]);
$resultSet = $stmt->executeQuery();

Implementing a generic way to handle this kind of query is tedious work. This is why most
developers fallback to inserting the parameters directly into the query, which can open
SQL injection possibilities if not handled carefully.

Doctrine DBAL implements a very powerful parsing process that will make this kind of prepared
statement possible natively in the binding type system.
The parsing necessarily comes with a performance overhead, but only if you really use a list of parameters.
There are two special binding types that describe a list of integers or strings:

	\Doctrine\DBAL\Connection::PARAM_INT_ARRAY

	\Doctrine\DBAL\Connection::PARAM_STR_ARRAY

Using one of these constants as a type you can activate the SQLParser inside Doctrine that rewrites
the SQL and flattens the specified values into the set of parameters. Consider our previous example:

<?php
$stmt = $conn->executeQuery('SELECT * FROM articles WHERE id IN (?)',
 [[1, 2, 3, 4, 5, 6]],
 [\Doctrine\DBAL\Connection::PARAM_INT_ARRAY]
);

The SQL statement passed to Connection#executeQuery is not the one actually passed to the
database. It is internally rewritten to look like the following explicit code that could
be specified as well:

<?php
// Same SQL WITHOUT usage of Doctrine\DBAL\Connection::PARAM_INT_ARRAY
$stmt = $conn->executeQuery('SELECT * FROM articles WHERE id IN (?, ?, ?, ?, ?, ?)',
 [1, 2, 3, 4, 5, 6],
 [
 ParameterType::INTEGER,
 ParameterType::INTEGER,
 ParameterType::INTEGER,
 ParameterType::INTEGER,
 ParameterType::INTEGER,
 ParameterType::INTEGER,
]
);

This is much more complicated and is ugly to write generically.

Note

The parameter list support only works with Doctrine\DBAL\Connection::executeQuery()
and Doctrine\DBAL\Connection::executeStatement(), NOT with the binding methods of
a prepared statement.

API

The DBAL contains several methods for executing queries against
your configured database for data retrieval and manipulation.

These DBAL methods retrieve data from the database using the underlying database driver and do not perform any type conversion.
So the result php type for a database column can vary between database drivers and php versions.

Below we’ll introduce these methods and provide some examples for each of
them.

prepare()

Prepare a given SQL statement and return the
\Doctrine\DBAL\Statement instance:

<?php
$statement = $conn->prepare('SELECT * FROM user');
$resultSet = $statement->executeQuery();
$users = $resultSet->fetchAllAssociative();

/*
array(
 0 => array(
 'username' => 'jwage',
 'email' => 'j.wage@example.com'
)
)
*/

executeStatement()

Executes a prepared statement with the given SQL and parameters and
returns the affected rows count:

<?php
$count = $conn->executeStatement('UPDATE user SET username = ? WHERE id = ?', ['jwage', 1]);
echo $count; // 1

The $types variable contains the PDO or Doctrine Type constants
to perform necessary type conversions between actual input
parameters and expected database values. See the
Types section for more information.

executeQuery()

Creates a prepared statement for the given SQL and passes the
parameters to the executeQuery method, then returning the result set:

<?php
$resultSet = $conn->executeQuery('SELECT * FROM user WHERE username = ?', ['jwage']);
$user = $resultSet->fetchAssociative();

/*
array(
 0 => 'jwage',
 1 => 'j.wage@example.com'
)
*/

The $types variable contains the PDO or Doctrine Type constants
to perform necessary type conversions between actual input
parameters and expected database values. See the
Types section for more information.

fetchAllAssociative()

Execute the query and fetch all results into an array:

<?php
$users = $conn->fetchAllAssociative('SELECT * FROM user');

/*
array(
 0 => array(
 'username' => 'jwage',
 'email' => 'j.wage@example.com'
)
)
*/

fetchAllKeyValue()

Execute the query and fetch the first two columns into an associative array as keys and values respectively:

<?php
$users = $conn->fetchAllKeyValue('SELECT username, email FROM user');

/*
array(
 'jwage' => 'j.wage@example.com',
)
*/

Note

All additional columns will be ignored and are only allowed to be selected by DBAL for its internal purposes.

fetchAllAssociativeIndexed()

Execute the query and fetch the data as an associative array where the key represents the first column and the value is
an associative array of the rest of the columns and their values:

<?php
$users = $conn->fetchAllAssociativeIndexed('SELECT id, username, email FROM user');

/*
array(
 1 => array(
 'username' => 'jwage',
 'email' => 'j.wage@example.com'
)
)
*/

fetchNumeric()

Numeric index retrieval of first result row of the given query:

<?php
$user = $conn->fetchNumeric('SELECT * FROM user WHERE username = ?', ['jwage']);

/*
array(
 0 => 'jwage',
 1 => 'j.wage@example.com'
)
*/

fetchOne()

Retrieve only the value of the first column of the first result row.

<?php
$username = $conn->fetchOne('SELECT username FROM user WHERE id = ?', [1], 0);
echo $username; // jwage

fetchAssociative()

Retrieve associative array of the first result row.

<?php
$user = $conn->fetchAssociative('SELECT * FROM user WHERE username = ?', ['jwage']);
/*
array(
 'username' => 'jwage',
 'email' => 'j.wage@example.com'
)
*/

There are also convenience methods for data manipulation queries:

iterateKeyValue()

Execute the query and iterate over the first two columns as keys and values respectively:

<?php
foreach ($conn->iterateKeyValue('SELECT username, email FROM user') as $username => $email) {
 // ...
}

Note

All additional columns will be ignored and are only allowed to be selected by DBAL for its internal purposes.

iterateAssociativeIndexed()

Execute the query and iterate over the result with the key representing the first column and the value being
an associative array of the rest of the columns and their values:

<?php
foreach ($conn->iterateAssociativeIndexed('SELECT id, username, email FROM user') as $id => $data) {
 // ...
}

delete()

Delete all rows of a table matching the given identifier, where
keys are column names.

<?php
$conn->delete('user', ['id' => 1]);
// DELETE FROM user WHERE id = ? (1)

insert()

Insert a row into the given table name using the key value pairs of
data.

<?php
$conn->insert('user', ['username' => 'jwage']);
// INSERT INTO user (username) VALUES (?) (jwage)

update()

Update all rows for the matching key value identifiers with the
given data.

<?php
$conn->update('user', ['username' => 'jwage'], ['id' => 1]);
// UPDATE user (username) VALUES (?) WHERE id = ? (jwage, 1)

Events

Both Doctrine\DBAL\DriverManager and
Doctrine\DBAL\Connection accept an instance of
Doctrine\Common\EventManager. The EventManager has a couple of
events inside the DBAL layer that are triggered for the user to
listen to.

PostConnect Event

Doctrine\DBAL\Events::postConnect is triggered right after the
connection to the database is established. It allows to specify any
relevant connection specific options and gives access to the
Doctrine\DBAL\Connection instance that is responsible for the
connection management via an instance of
Doctrine\DBAL\Event\ConnectionEventArgs event arguments
instance.

Doctrine ships with one implementation for the “PostConnect” event:

	Doctrine\DBAL\Event\Listeners\OracleSessionInit allows to
specify any number of Oracle Session related environment variables
that are set right after the connection is established.

You can register events by subscribing them to the EventManager
instance passed to the Connection factory:

<?php
$evm = new EventManager();
$evm->addEventSubscriber(new OracleSessionInit([
 'NLS_TIME_FORMAT' => 'HH24:MI:SS',
]));

$conn = DriverManager::getConnection($connectionParams, null, $evm);

Schema Events

There are multiple events in Doctrine DBAL that are triggered on schema changes
of the database. It is possible to add your own event listener to be able to run
your own code before changes to the database are committed. An instance of
Doctrine\Common\EventManager can also be added to Platforms.

A event listener class can contain one or more methods to schema events. These
methods must be named like the events itself.

<?php
$evm = new EventManager();
$eventName = Events::onSchemaCreateTable;
$evm->addEventListener($eventName, new MyEventListener());

<?php
$evm = new EventManager();
$eventNames = [Events::onSchemaCreateTable, Events::onSchemaCreateTableColumn];
$evm->addEventListener($eventNames, new MyEventListener());

The following events are available.

OnSchemaCreateTable Event

Doctrine\DBAL\Events::onSchemaCreateTable is triggered before every
create statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaCreateTableEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaCreateTable(SchemaCreateTableEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaCreateTable, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\Table instance and its columns, the used Platform and
provides a way to add additional SQL statements.

OnSchemaCreateTableColumn Event

Doctrine\DBAL\Events::onSchemaCreateTableColumn is triggered on every new column before a
create statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaCreateTableColumnEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaCreateTableColumn(SchemaCreateTableColumnEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaCreateTableColumn, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\Table instance, the affected Doctrine\DBAL\Schema\Column,
the used Platform and provides a way to add additional SQL statements.

OnSchemaDropTable Event

Doctrine\DBAL\Events::onSchemaDropTable is triggered before a drop table
statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaDropTableEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaDropTable(SchemaDropTableEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaDropTable, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\Table instance, the used Platform and
provides a way to set an additional SQL statement.

OnSchemaAlterTable Event

Doctrine\DBAL\Events::onSchemaAlterTable is triggered before every
alter statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaAlterTableEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaAlterTable(SchemaAlterTableEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaAlterTable, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\TableDiff instance, the used Platform and
provides a way to add additional SQL statements.

OnSchemaAlterTableAddColumn Event

Doctrine\DBAL\Events::onSchemaAlterTableAddColumn is triggered on every altered column before every
alter statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaAlterTableAddColumnEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaAlterTableAddColumn(SchemaAlterTableAddColumnEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaAlterTableAddColumn, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\TableDiff instance, the affected Doctrine\DBAL\Schema\Column,
the used Platform and provides a way to add additional SQL statements.

OnSchemaAlterTableRemoveColumn Event

Doctrine\DBAL\Events::onSchemaAlterTableRemoveColumn is triggered on every column that is going to be removed
before every alter-drop statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaAlterTableRemoveColumnEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaAlterTableRemoveColumn(SchemaAlterTableRemoveColumnEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaAlterTableRemoveColumn, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\TableDiff instance, the affected Doctrine\DBAL\Schema\Column,
the used Platform and provides a way to add additional SQL statements.

OnSchemaAlterTableChangeColumn Event

Doctrine\DBAL\Events::onSchemaAlterTableChangeColumn is triggered on every column that is going to be changed
before every alter statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaAlterTableRemoveColumnEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaAlterTableChangeColumn(SchemaAlterTableChangeColumnEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaAlterTableChangeColumn, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\TableDiff instance, a Doctrine\DBAL\Schema\ColumnDiff of
the affected column, the used Platform and provides a way to add additional SQL statements.

OnSchemaAlterTableRenameColumn Event

Doctrine\DBAL\Events::onSchemaAlterTableRenameColumn is triggered on every column that is going to be renamed
before every alter statement that is executed by one of the Platform instances and injects
an instance of Doctrine\DBAL\Event\SchemaAlterTableRenameColumnEventArgs as event argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaAlterTableRenameColumn(SchemaAlterTableRenameColumnEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaAlterTableRenameColumn, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Schema\TableDiff instance, the old column name and
the new column in form of a Doctrine\DBAL\Schema\Column object, the used Platform and provides
a way to add additional SQL statements.

OnSchemaColumnDefinition Event

Doctrine\DBAL\Events::onSchemaColumnDefinition is triggered on a schema update and is
executed for every existing column definition of the database before changes are applied.
An instance of Doctrine\DBAL\Event\SchemaColumnDefinitionEventArgs is injected as argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaColumnDefinition(SchemaColumnDefinitionEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaColumnDefinition, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the table column definitions of the current database, table name, Platform and
Doctrine\DBAL\Connection instance. Columns, that are about to be added, are not listed.

OnSchemaIndexDefinition Event

Doctrine\DBAL\Events::onSchemaIndexDefinition is triggered on a schema update and is
executed for every existing index definition of the database before changes are applied.
An instance of Doctrine\DBAL\Event\SchemaIndexDefinitionEventArgs is injected as argument
for event listeners.

<?php
class MyEventListener
{
 public function onSchemaIndexDefinition(SchemaIndexDefinitionEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onSchemaIndexDefinition, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the table index definitions of the current database, table name, Platform and
Doctrine\DBAL\Connection instance. Indexes, that are about to be added, are not listed.

OnTransactionBegin Event

Doctrine\DBAL\Events::onTransactionBegin is triggered when Doctrine\DBAL\Connection::beginTransaction()
is called. An instance of Doctrine\DBAL\Event\TransactionBeginEventArgs is injected as argument for event listeners.

<?php
class MyEventListener
{
 public function onTransactionBegin(TransactionBeginEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onTransactionBegin, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Connection instance.
Please note that this event can be called multiple times, since transactions can be nested.

OnTransactionCommit Event

Doctrine\DBAL\Events::onTransactionCommit is triggered when Doctrine\DBAL\Connection::commit() is called.
An instance of Doctrine\DBAL\Event\TransactionCommitEventArgs is injected as argument for event listeners.

<?php
class MyEventListener
{
 public function onTransactionCommit(TransactionCommitEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onTransactionCommit, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Connection instance.
Please note that this event can be called multiple times, since transactions can be nested.
If you want to know if a transaction is actually committed, you should rely on
TransactionCommitEventArgs::getConnection()->getTransactionNestingLevel() === 0 or
TransactionCommitEventArgs::getConnection()->isTransactionActive()

OnTransactionRollBack Event

Doctrine\DBAL\Events::onTransactionRollBack is triggered when Doctrine\DBAL\Connection::rollBack() is called.
An instance of Doctrine\DBAL\Event\TransactionRollBackEventArgs is injected as argument for event listeners.

<?php
class MyEventListener
{
 public function onTransactionRollBack(TransactionRollBackEventArgs $event)
 {
 // Your EventListener code
 }
}

$evm = new EventManager();
$evm->addEventListener(Events::onTransactionRollBack, new MyEventListener());

$conn = DriverManager::getConnection($connectionParams, null, $evm);

It allows you to access the Doctrine\DBAL\Connection instance.
Please note that this event can be called multiple times, since transactions can be nested.
If you want to know if a transaction is actually rolled back, you should rely on
TransactionCommitRollBackArgs::getConnection()->getTransactionNestingLevel() === 0 or
TransactionCommitRollBackArgs::getConnection()->isTransactionActive()

Introduction

The Doctrine **D**ata**B**ase **A**bstraction **L**ayer (DBAL) offers an
object-oriented API and a lot of additional, horizontal features
like database schema introspection and manipulation.

The fact that the Doctrine DBAL abstracts the access to the concrete
database away through the use of interfaces, makes it possible to implement
custom drivers that may use existing native or self-made APIs.
For example, the DBAL ships with a driver for Oracle databases that uses
the oci8 extension under the hood.

The following database vendors are currently supported:

	MySQL

	Oracle

	Microsoft SQL Server

	PostgreSQL

	SQLite

The Doctrine DBAL can be used independently of the
[Doctrine Object-Relational Mapper (ORM)](https://www.doctrine-project.org/projects/orm.html).
In order to use the DBAL all you need is
the class loader provided by [Composer](https://getcomposer.org/), to be able to autoload the classes:

<?php

require_once 'vendor/autoload.php';

Now you are able to load classes that are in the
/path/to/doctrine directory like
/path/to/doctrine/Doctrine/DBAL/DriverManager.php which we will
use later in this documentation to configure our first Doctrine
DBAL connection.

Known Vendor Issues

This section describes known compatability issues with all the
supported database vendors:

PostgreSQL

DateTime, DateTimeTz and Time Types

Postgres has a variable return format for the datatype TIMESTAMP(n)
and TIME(n) if microseconds are allowed (n > 0). Whenever you save
a value with microseconds = 0, PostgreSQL will return this value in
the format:

2010-10-10 10:10:10 (Y-m-d H:i:s)

However if you save a value with microseconds it will return the
full representation:

2010-10-10 10:10:10.123456 (Y-m-d H:i:s.u)

Using the DateTime, DateTimeTz or Time type (and immutable variants) with microseconds
enabled columns can lead to errors because internally types expect
the exact format ‘Y-m-d H:i:s’ in combination with
DateTime::createFromFormat(). This method is twice as fast as
passing the date to the constructor of DateTime.

This is why Doctrine always wants to create the time related types
without microseconds:

	DateTime to TIMESTAMP(0) WITHOUT TIME ZONE

	DateTimeTz to TIMESTAMP(0) WITH TIME ZONE

	Time to TIME(0) WITHOUT TIME ZONE

If you do not let Doctrine create the date column types and rather
use types with microseconds you have replace the “DateTime”,
“DateTimeTz” and “Time” types (and immutable variants) with a more
liberal DateTime parser that detects the format automatically:

use Doctrine\DBAL\Types\Type;

Type::overrideType('datetime', 'Doctrine\DBAL\Types\VarDateTimeType');
Type::overrideType('datetimetz', 'Doctrine\DBAL\Types\VarDateTimeType');
Type::overrideType('time', 'Doctrine\DBAL\Types\VarDateTimeType');

Type::overrideType('datetime_immutable', 'Doctrine\DBAL\Types\VarDateTimeImmutableType');
Type::overrideType('datetimetz_immutable', 'Doctrine\DBAL\Types\VarDateTimeImmutableType');
Type::overrideType('time_immutable', 'Doctrine\DBAL\Types\VarDateTimeImmutableType');

Timezones and DateTimeTz

Postgres does not save the actual Timezone Name but UTC-Offsets.
The difference is subtle but can be potentially very nasty. Derick
Rethans explains it very well
in a blog post of his [http://derickrethans.nl/storing-date-time-in-database.html].

MySQL

DateTimeTz

MySQL does not support saving timezones or offsets. The DateTimeTz
type therefore behaves like the DateTime type.

Sqlite

Buffered Queries and Isolation

Be careful if you execute a SELECT query and do not iterate over the
statements results immediately. UPDATE statements executed before iteration
affect only the rows that have not been buffered into PHP memory yet. This
breaks the SERIALIZABLE transaction isolation property that SQLite supposedly
has.

DateTime

Unlike most database management systems, Sqlite does not convert supplied
datetime strings to an internal storage format before storage. Instead, Sqlite
stores them as verbatim strings (i.e. as they are entered) and expects the user
to use the DATETIME() function when reading data which then converts the
stored values to datetime strings.
Because Doctrine is not using the DATETIME() function, you may end up with
“Could not convert database value … to Doctrine Type datetime.” exceptions
when trying to convert database values to \DateTime objects using

\Doctrine\DBAL\Types\Type::getType('datetime')->convertToPhpValue(...)

DateTimeTz

Sqlite does not support saving timezones or offsets. The DateTimeTz
type therefore behaves like the DateTime type.

Reverse engineering primary key order

SQLite versions < 3.7.16 only return that a column is part of the primary key,
but not the order. This is only a problem with tables where the order of the
columns in the table is not the same as the order in the primary key. Tables
created with Doctrine use the order of the columns as defined in the primary
key.

IBM DB2

DateTimeTz

DB2 does not save the actual Timezone Name but UTC-Offsets. The
difference is subtle but can be potentially very nasty. Derick
Rethans explains it very well
in a blog post of his [http://derickrethans.nl/storing-date-time-in-database.html].

Oracle

DateTimeTz

Oracle does not save the actual Timezone Name but UTC-Offsets. The
difference is subtle but can be potentially very nasty. Derick
Rethans explains it very well
in a blog post of his [http://derickrethans.nl/storing-date-time-in-database.html].

OCI-LOB instances

Doctrine DBAL always requests CLOB columns as strings, so that you as
a developer never get access to the OCI-LOB instance. Since we
are using prepared statements for all write operations inside the
ORM, using strings instead of the OCI-LOB does not cause any
problems.

Microsoft SQL Server

Unique and NULL

Microsoft SQL Server takes Unique very seriously. There is only
ever one NULL allowed contrary to the standard where you can have
multiple NULLs in a unique column.

DateTime, DateTimeTz and Time Types

SQL Server has a variable return format for the datatype DATETIME(n)
if microseconds are allowed (n > 0). Whenever you save
a value with microseconds = 0.

If you do not let Doctrine create the date column types and rather
use types with microseconds you have replace the “DateTime”,
“DateTimeTz” and “Time” types (and immutable variants) with a more
liberal DateTime parser that detects the format automatically:

use Doctrine\DBAL\Types\Type;

Type::overrideType('datetime', 'Doctrine\DBAL\Types\VarDateTime');
Type::overrideType('datetimetz', 'Doctrine\DBAL\Types\VarDateTime');
Type::overrideType('time', 'Doctrine\DBAL\Types\VarDateTime');

Type::overrideType('datetime_immutable', 'Doctrine\DBAL\Types\VarDateTimeImmutableType');
Type::overrideType('datetimetz_immutable', 'Doctrine\DBAL\Types\VarDateTimeImmutableType');
Type::overrideType('time_immutable', 'Doctrine\DBAL\Types\VarDateTimeImmutableType');

Platforms

Platforms abstract query generation and the subtle differences of
the supported database vendors. In most cases you don’t need to
interact with the Doctrine\DBAL\Platforms package a lot, but
there might be certain cases when you are programming database
independent where you want to access the platform to generate
queries for you.

The platform can be accessed from any Doctrine\DBAL\Connection
instance by calling the getDatabasePlatform() method.

<?php
$platform = $conn->getDatabasePlatform();

Each database driver has a platform associated with it by default.
Several drivers also share the same platform, for example PDO_OCI
and OCI8 share the OraclePlatform.

Doctrine provides abstraction for different versions of platforms
if necessary to represent their specific features and dialects.
For example has Microsoft added support for sequences in their 2012
version. Therefore Doctrine offers a separate platform class for this
extending the previous 2008 version. The 2008 version adds support
for additional data types which in turn don’t exist in the previous
2005 version and so on.
A list of available platform classes that can be used for each vendor
can be found as follows:

MySQL

	MySQLPlatform for version 5.0 and above.

	MySQL57Platform for version 5.7 (5.7.9 GA) and above.

	MySQL80Platform for version 8.0 (8.0 GA) and above.

MariaDB

	MariaDb1027Platform for version 10.2 (10.2.7 GA) and above.

Oracle

	OraclePlatform for all versions.

Microsoft SQL Server

	SQLServerPlatform for version 2012 and above.

PostgreSQL

	PostgreSQLPlatform for version 9.4 and above.

	PostgreSQL100Platform for version 10.0 and above.

IBM DB2

	Db2Platform for all versions.

SQLite

	SqlitePlatform for all versions.

It is highly encouraged to use the platform class that matches your
database vendor and version best. Otherwise it is not guaranteed
that the compatibility in terms of SQL dialect and feature support
between Doctrine DBAL and the database server will always be given.

If you want to overwrite parts of your platform you can do so when
creating a connection. There is a platform option you can pass
an instance of the platform you want the connection to use:

<?php
$myPlatform = new MyPlatform();
$options = [
 'driver' => 'pdo_sqlite',
 'path' => 'database.sqlite',
 'platform' => $myPlatform,
];
$conn = DriverManager::getConnection($options);

This way you can optimize your schema or generated SQL code with
features that might not be portable for instance, however are
required for your special needs. This can include using triggers or
views to simulate features or adding behaviour to existing SQL
functions.

Platforms are also responsible to know which database type
translates to which PHP Type. This is a very tricky issue across
all the different database vendors, for example MySQL BIGINT and
Oracle NUMBER should be handled as integer. Doctrine DBAL offers a
powerful way to abstract the database to php and back conversion,
which is described in the next section.

Portability

There are often cases when you need to write an application or library that is portable
across multiple different database vendors. The Doctrine ORM is one example of such
a library. It is an abstraction layer over all the currently supported vendors (MySQL, Oracle,
PostgreSQL, SQLite and Microsoft SQL Server). If you want to use the DBAL
to write a portable application or library you have to follow lots of rules to make
all the different vendors work the same.

There are many different layers that you need to take care of, here is a quick list:

	Returning of data is handled differently across vendors.
Oracle converts empty strings to NULL, which means a portable application
needs to convert all empty strings to null.

	Additionally some vendors pad CHAR columns to their length, whereas others don’t.
This means all strings returned from a database have to be passed through rtrim().

	Case-sensitivity of column keys is handled differently in all databases, even depending
on identifier quoting or not. You either need to know all the rules or fix the cases
to lower/upper-case only.

	ANSI-SQL is not implemented fully by the different vendors. You have to make
sure that the SQL you write is supported by all the vendors you are targeting.

	Some vendors use sequences for identity generation, some auto-increment approaches.
Both are completely different (pre- and post-insert access) and therefore need
special handling.

	Every vendor has a list of keywords that are not allowed inside SQL. Some even
allow a subset of their keywords, but not at every position.

	Database types like dates, long text fields, booleans and many others are handled
very differently between the vendors.

	There are differences with the regard to support of positional, named or both styles of parameters
in prepared statements between all vendors.

For each point in this list there are different abstraction layers in Doctrine DBAL that you
can use to write a portable application.

Connection Wrapper

To handle all the points 1-3 you have to use a special wrapper around the database
connection. The handling and differences to tackle are all taken from the great
PEAR MDB2 library [http://pear.php.net/package/MDB2/redirected].

Using the following code block in your initialization will:

	rtrim() all strings if necessary

	Convert all empty strings to null

	Return all associative keys in lower-case, using PDO native functionality or implemented in PHP userland (OCI8).

<?php

use Doctrine\DBAL\ColumnCase;
use Doctrine\DBAL\Portability\Connection as PortableConnection;

$params = [
 // vendor specific configuration
 //...
 'wrapperClass' => PortableConnection::class,
 'portability' => PortableConnection::PORTABILITY_ALL,
 'fetch_case' => ColumnCase::LOWER,
];

This sort of portability handling is pretty expensive because all the result
rows and columns have to be looped inside PHP before being returned to you.
This is why by default Doctrine ORM does not use this compability wrapper but
implements another approach to handle assoc-key casing and ignores the other
two issues.

Database Platform

Using the database platform you can generate bits of SQL for you, specifically
in the area of SQL functions to achieve portability. You should have a look
at all the different methods that the platforms allow you to access.

Keyword Lists

Doctrine ships with lists of keywords for every supported vendor. You
can access a keyword list through the schema manager of the vendor you
are currently using or just instantiating it from the Doctrine\DBAL\Platforms\Keywords
namespace.

SQL Query Builder

Doctrine features a powerful query builder for the SQL language. This QueryBuilder object has methods
to add parts to an SQL statement. If you built the complete state you can execute it using the connection
it was generated from. The API is roughly the same as that of the DQL Query Builder.

You can access the QueryBuilder by calling Doctrine\DBAL\Connection#createQueryBuilder:

<?php

$conn = DriverManager::getConnection([/*..*/]);
$queryBuilder = $conn->createQueryBuilder();

Security: Safely preventing SQL Injection

It is important to understand how the query builder works in terms of
preventing SQL injection. Because SQL allows expressions in almost
every clause and position the Doctrine QueryBuilder can only prevent
SQL injections for calls to the methods setFirstResult() and
setMaxResults().

All other methods cannot distinguish between user- and developer input
and are therefore subject to the possibility of SQL injection.

To safely work with the QueryBuilder you should NEVER pass user
input to any of the methods of the QueryBuilder and use the placeholder
? or :name syntax in combination with
$queryBuilder->setParameter($placeholder, $value) instead:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ?')
 ->setParameter(0, $userInputEmail)
;

Note

The numerical parameters in the QueryBuilder API start with the needle
0.

Building a Query

The \Doctrine\DBAL\Query\QueryBuilder supports building SELECT,
INSERT, UPDATE and DELETE queries. Which sort of query you
are building depends on the methods you are using.

For SELECT queries you start with invoking the select() method

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users');

For INSERT, UPDATE and DELETE queries you can pass the
table name into the insert($tableName), update($tableName)
and delete($tableName):

<?php

$queryBuilder
 ->insert('users')
;

$queryBuilder
 ->update('users')
;

$queryBuilder
 ->delete('users')
;

You can convert a query builder to its SQL string representation
by calling $queryBuilder->getSQL() or casting the object to string.

DISTINCT-Clause

The SELECT statement can be specified with a DISTINCT clause:

<?php

$queryBuilder
 ->select('name')
 ->distinct()
 ->from('users')
;

WHERE-Clause

The SELECT, UPDATE and DELETE types of queries allow where
clauses with the following API:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ?')
;

Calling where() overwrites the previous clause and you can prevent
this by combining expressions with andWhere() and orWhere() methods.
You can alternatively use expressions to generate the where clause.

Table alias

The from() method takes an optional second parameter with which a table
alias can be specified.

<?php

$queryBuilder
 ->select('u.id', 'u.name')
 ->from('users', 'u')
 ->where('u.email = ?')
;

GROUP BY and HAVING Clause

The SELECT statement can be specified with GROUP BY and HAVING clauses.
Using having() works exactly like using where() and there are
corresponding andHaving() and orHaving() methods to combine predicates.
For the GROUP BY you can use the methods groupBy() which replaces
previous expressions or addGroupBy() which adds to them:

<?php
$queryBuilder
 ->select('DATE(last_login) as date', 'COUNT(id) AS users')
 ->from('users')
 ->groupBy('DATE(last_login)')
 ->having('users > 10')
;

Join Clauses

For SELECT clauses you can generate different types of joins: INNER,
LEFT and RIGHT. The RIGHT join is not portable across all platforms
(Sqlite for example does not support it).

A join always belongs to one part of the from clause. This is why you have to
specify the alias of the FROM part the join belongs to as the first
argument.

As a second and third argument you can then specify the name and alias of the
join-table and the fourth argument contains the ON clause.

<?php
$queryBuilder
 ->select('u.id', 'u.name', 'p.number')
 ->from('users', 'u')
 ->innerJoin('u', 'phonenumbers', 'p', 'u.id = p.user_id')

The method signature for join(), innerJoin(), leftJoin() and
rightJoin() is the same. join() is a shorthand syntax for
innerJoin().

Order-By Clause

The orderBy($sort, $order = null) method adds an expression to the ORDER
BY clause. Be aware that the optional $order parameter is not safe for
user input and accepts SQL expressions.

<?php
$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->orderBy('username', 'ASC')
 ->addOrderBy('last_login', 'ASC NULLS FIRST')
;

Use the addOrderBy method to add instead of replace the orderBy clause.

Limit Clause

Only a few database vendors have the LIMIT clause as known from MySQL,
but we support this functionality for all vendors using workarounds.
To use this functionality you have to call the methods setFirstResult($offset)
to set the offset and setMaxResults($limit) to set the limit of results
returned.

<?php
$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->setFirstResult(10)
 ->setMaxResults(20);

VALUES Clause

For the INSERT clause setting the values for columns to insert can be
done with the values() method on the query builder:

<?php

$queryBuilder
 ->insert('users')
 ->values(
 [
 'name' => '?',
 'password' => '?',
]
)
 ->setParameter(0, $username)
 ->setParameter(1, $password)
;
// INSERT INTO users (name, password) VALUES (?, ?)

Each subsequent call to values() overwrites any previous set values.
Setting single values instead of all at once is also possible with the
setValue() method:

<?php

$queryBuilder
 ->insert('users')
 ->setValue('name', '?')
 ->setValue('password', '?')
 ->setParameter(0, $username)
 ->setParameter(1, $password)
;
// INSERT INTO users (name, password) VALUES (?, ?)

Of course you can also use both methods in combination:

<?php

$queryBuilder
 ->insert('users')
 ->values(
 [
 'name' => '?',
]
)
 ->setParameter(0, $username)
;
// INSERT INTO users (name) VALUES (?)

if ($password) {
 $queryBuilder
 ->setValue('password', '?')
 ->setParameter(1, $password)
 ;
 // INSERT INTO users (name, password) VALUES (?, ?)
}

Not setting any values at all will result in an empty insert statement:

<?php

$queryBuilder
 ->insert('users')
;
// INSERT INTO users () VALUES ()

Set Clause

For the UPDATE clause setting columns to new values is necessary
and can be done with the set() method on the query builder.
Be aware that the second argument allows expressions and is not safe for
user-input:

<?php

$queryBuilder
 ->update('users', 'u')
 ->set('u.logins', 'u.logins + 1')
 ->set('u.last_login', '?')
 ->setParameter(0, $userInputLastLogin)
;

Building Expressions

For more complex WHERE, HAVING or other clauses you can use expressions
for building these query parts. You can invoke the expression API, by calling
$queryBuilder->expr() and then invoking the helper method on it.

Most notably you can use expressions to build nested And-/Or statements:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where(
 $queryBuilder->expr()->and(
 $queryBuilder->expr()->eq('username', '?'),
 $queryBuilder->expr()->eq('email', '?')
)
);

The and() and or() methods accept an arbitrary amount
of arguments and can be nested in each other.

There is a bunch of methods to create comparisons and other SQL snippets
on the Expression object that you can see on the API documentation.

Binding Parameters to Placeholders

It is often not necessary to know about the exact placeholder names
during the building of a query. You can use two helper methods
to bind a value to a placeholder and directly use that placeholder
in your query as a return value:

<?php

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ' . $queryBuilder->createNamedParameter($userInputEmail))
;
// SELECT id, name FROM users WHERE email = :dcValue1

$queryBuilder
 ->select('id', 'name')
 ->from('users')
 ->where('email = ' . $queryBuilder->createPositionalParameter($userInputEmail))
;
// SELECT id, name FROM users WHERE email = ?

Schema-Manager

A Schema Manager instance helps you with the abstraction of the
generation of SQL assets such as Tables, Sequences, Foreign Keys
and Indexes.

To retrieve the SchemaManager for your connection you can use
the getSchemaManager() method:

<?php
$sm = $conn->getSchemaManager();

Now with the SchemaManager instance in $sm you can use the
available methods to learn about your database schema:

Note

Parameters containing identifiers passed to the SchemaManager
methods are NOT quoted automatically! Identifier quoting is
really difficult to do manually in a consistent way across
different databases. You have to manually quote the identifiers
when you accept data from user or other sources not under your
control.

listDatabases()

Retrieve an array of databases on the configured connection:

<?php
$databases = $sm->listDatabases();

listSequences()

Retrieve an array of Doctrine\DBAL\Schema\Sequence instances
that exist for a database:

<?php
$sequences = $sm->listSequences();

Or if you want to manually specify a database name:

<?php
$sequences = $sm->listSequences('dbname');

Now you can loop over the array inspecting each sequence object:

<?php
foreach ($sequences as $sequence) {
 echo $sequence->getName() . "\n";
}

listTableColumns()

Retrieve an array of Doctrine\DBAL\Schema\Column instances that
exist for the given table:

<?php
$columns = $sm->listTableColumns('user');

Now you can loop over the array inspecting each column object:

<?php
foreach ($columns as $column) {
 echo $column->getName() . ': ' . $column->getType() . "\n";
}

listTableDetails()

Retrieve a single Doctrine\DBAL\Schema\Table instance that
encapsulates all the details of the given table:

<?php
$table = $sm->listTableDetails('user');

Now you can call methods on the table to manipulate the in memory
schema for that table. For example we can add a new column:

<?php
$table->addColumn('email_address', 'string');

listTableForeignKeys()

Retrieve an array of Doctrine\DBAL\Schema\ForeignKeyConstraint
instances that exist for the given table:

<?php
$foreignKeys = $sm->listTableForeignKeys('user');

Now you can loop over the array inspecting each foreign key
object:

<?php
foreach ($foreignKeys as $foreignKey) {
 echo $foreignKey->getName() . ': ' . $foreignKey->getLocalTableName() ."\n";
}

listTableIndexes()

Retrieve an array of Doctrine\DBAL\Schema\Index instances that
exist for the given table:

<?php
$indexes = $sm->listTableIndexes('user');

Now you can loop over the array inspecting each index object:

<?php
foreach ($indexes as $index) {
 echo $index->getName() . ': ' . ($index->isUnique() ? 'unique' : 'not unique') . "\n";
}

listTables()

Retrieve an array of Doctrine\DBAL\Schema\Table instances that
exist in the connections database:

<?php
$tables = $sm->listTables();

Each Doctrine\DBAl\Schema\Table instance is populated with
information provided by all the above methods. So it encapsulates
an array of Doctrine\DBAL\Schema\Column instances that can be
retrieved with the getColumns() method:

<?php
foreach ($tables as $table) {
 echo $table->getName() . " columns:\n\n";
 foreach ($table->getColumns() as $column) {
 echo ' - ' . $column->getName() . "\n";
 }
}

listViews()

Retrieve an array of Doctrine\DBAL\Schema\View instances that
exist in the connections database:

<?php
$views = $sm->listViews();

Now you can loop over the array inspecting each view object:

<?php
foreach ($views as $view) {
 echo $view->getName() . ': ' . $view->getSql() . "\n";
}

createSchema()

For a complete representation of the current database you can use
the createSchema() method which returns an instance of
Doctrine\DBAL\Schema\Schema, which you can use in conjunction
with the SchemaTool or Schema Comparator.

<?php
$fromSchema = $sm->createSchema();

Now we can clone the $fromSchema to $toSchema and drop a
table:

<?php
$toSchema = clone $fromSchema;
$toSchema->dropTable('user');

Now we can compare the two schema instances in order to calculate
the differences between them and return the SQL required to make
the changes on the database:

<?php
$sql = $fromSchema->getMigrateToSql($toSchema, $conn->getDatabasePlatform());

The $sql array should give you a SQL query to drop the user
table:

<?php
print_r($sql);

/*
array(
 0 => 'DROP TABLE user'
)
*/

Schema-Representation

Doctrine has a very powerful abstraction of database schemas. It
offers an object-oriented representation of a database schema with
support for all the details of Tables, Sequences, Indexes and
Foreign Keys. These Schema instances generate a representation that
is equal for all the supported platforms. Internally this
functionality is used by the ORM Schema Tool to offer you create,
drop and update database schema methods from your Doctrine ORM
Metadata model. Up to very specific functionality of your database
system this allows you to generate SQL code that makes your Domain
model work.

You will be pleased to hear, that Schema representation is
completely decoupled from the Doctrine ORM though, that is you can
also use it in any other project to implement database migrations
or for SQL schema generation for any metadata model that your
application has. You can easily generate a Schema, as a simple
example shows:

<?php
$schema = new \Doctrine\DBAL\Schema\Schema();
$myTable = $schema->createTable("my_table");
$myTable->addColumn("id", "integer", ["unsigned" => true]);
$myTable->addColumn("username", "string", ["length" => 32]);
$myTable->setPrimaryKey(["id"]);
$myTable->addUniqueIndex(["username"]);
$myTable->setComment('Some comment');
$schema->createSequence("my_table_seq");

$myForeign = $schema->createTable("my_foreign");
$myForeign->addColumn("id", "integer");
$myForeign->addColumn("user_id", "integer");
$myForeign->addForeignKeyConstraint($myTable, ["user_id"], ["id"], ["onUpdate" => "CASCADE"]);

$queries = $schema->toSql($myPlatform); // get queries to create this schema.
$dropSchema = $schema->toDropSql($myPlatform); // get queries to safely delete this schema.

Now if you want to compare this schema with another schema, you can
use the Comparator class to get instances of SchemaDiff,
TableDiff and ColumnDiff, as well as information about other
foreign key, sequence and index changes.

<?php
$comparator = new \Doctrine\DBAL\Schema\Comparator();
$schemaDiff = $comparator->compare($fromSchema, $toSchema);

$queries = $schemaDiff->toSql($myPlatform); // queries to get from one to another schema.
$saveQueries = $schemaDiff->toSaveSql($myPlatform);

The Save Diff mode is a specific mode that prevents the deletion of
tables and sequences that might occur when making a diff of your
schema. This is often necessary when your target schema is not
complete but only describes a subset of your application.

All methods that generate SQL queries for you make much effort to
get the order of generation correct, so that no problems will ever
occur with missing links of foreign keys.

Schema Assets

A schema asset is considered any abstract atomic unit in a database such as schemas,
tables, indexes, but also sequences, columns and even identifiers.
The following chapter gives an overview of all available Doctrine DBAL
schema assets with short explanations on their context and usage.
All schema assets reside in the Doctrine\DBAL\Schema namespace.

Note

This chapter is far from being completely documented.

Column

Represents a table column in the database schema.
A column consists of a name, a type, portable options, commonly supported options and
vendors specific options.

Portable options

The following options are considered to be fully portable across all database platforms:

	notnull (boolean): Whether the column is nullable or not. Defaults to true.

	default (integer|string): The default value of the column if no value was specified.
Defaults to null.

	autoincrement (boolean): Whether this column should use an autoincremented value if
no value was specified. Only applies to Doctrine’s smallint, integer
and bigint types. Defaults to false.

	length (integer): The maximum length of the column. Only applies to Doctrine’s
string and binary types. Defaults to null and is evaluated to 255
in the platform.

	fixed (boolean): Whether a string or binary Doctrine type column has
a fixed length. Defaults to false.

	precision (integer): The precision of a Doctrine decimal or float type
column that determines the overall maximum number of digits to be stored (including scale).
Defaults to 10.

	scale (integer): The exact number of decimal digits to be stored in a Doctrine
decimal or float type column. Defaults to 0.

	customSchemaOptions (array): Additional options for the column that are
supported by all vendors:

	unique (boolean): Whether to automatically add a unique constraint for the column.
Defaults to false.

Common options

The following options are not completely portable but are supported by most of the
vendors:

	unsigned (boolean): Whether a smallint, integer or bigint Doctrine
type column should allow unsigned values only. Supported only by MySQL.
Defaults to false.

	comment (integer|string): The column comment. Supported by MySQL, PostgreSQL,
Oracle and SQL Server. Defaults to null.

Vendor specific options

The following options are completely vendor specific and absolutely not portable:

	columnDefinition (string): The custom column declaration SQL snippet to use instead
of the generated SQL by Doctrine. Defaults to null. This can useful to add
vendor specific declaration information that is not evaluated by Doctrine
(such as the ZEROFILL attribute on MySQL).

	customSchemaOptions (array): Additional options for the column that are
supported by some vendors but not portable:

	charset (string): The character set to use for the column. Currently only supported
on MySQL.

	collation (string): The collation to use for the column. Supported by MySQL, PostgreSQL,
Sqlite and SQL Server.

	check (string): The check constraint clause to add to the column.
Defaults to null.

Security

Allowing users of your website to communicate with a database can possibly have
security implications that you should be aware of. Databases allow very
powerful commands that not every user of your website should be able to
execute. Additionally the data in your database probably contains information
that should not be visible to everyone with access to the website.

The most dangerous security problem with regard to databases is the possibility
of SQL injections. An SQL injection security hole allows an attacker to
execute new or modify existing SQL statements to access information that he is
not allowed to access.

Neither Doctrine DBAL nor ORM can prevent such attacks if you are careless as a
developer. This section explains to you the problems of SQL injection and how
to prevent them.

SQL Injection: Safe and Unsafe APIs for User Input

A database library naturally touches the class of SQL injection security
vulnerabilities. You should read the following information carefully to
understand how Doctrine can and cannot help you to prevent SQL injection.

In general you should assume that APIs in Doctrine are not safe for user input.
There are however some exceptions.

The following APIs are designed to be SAFE from SQL injections:

	For Doctrine\DBAL\Connection#insert($table, $values, $types),
Doctrine\DBAL\Connection#update($table, $values, $where, $types) and
Doctrine\DBAL\Connection#delete($table, $where, $types) only the array
values of $values and $where. The table name and keys of $values
and $where are NOT escaped.

	Doctrine\DBAL\Query\QueryBuilder#setFirstResult($offset)

	Doctrine\DBAL\Query\QueryBuilder#setMaxResults($limit)

	Doctrine\DBAL\Platforms\AbstractPlatform#modifyLimitQuery($sql, $limit, $offset) for the $limit and $offset parameters.

Consider ALL other APIs to be not safe for user-input:

	Query methods on the Connection

	The QueryBuilder API

	The Platforms and SchemaManager APIs to generate and execute DML/DDL SQL statements

To use values from the user input in those scenarios use prepared statements.

User input in your queries

A database application necessarily requires user-input to be passed to your queries.
There are wrong and right ways to do this and it is very important to be very strict about this:

Wrong: String Concatenation

You should never ever build your queries dynamically and concatenate user-input into your
SQL or DQL query. For Example:

<?php
// Very wrong!
$sql = "SELECT * FROM users WHERE name = '" . $_GET['username']. "'";

An attacker could inject any value into the GET variable “username” to modify the query to his needs.

Although DQL is a wrapper around SQL that can prevent some security implications, the previous
example is also a threat to DQL queries.

<?php
// DQL is not safe against arbitrary user-input as well:
$dql = "SELECT u FROM User u WHERE u.username = '" . $_GET['username'] . "'";

In this scenario an attacker could still pass a username set to ' OR 1 = 1 and create a valid DQL query.
Although DQL will make use of quoting functions when literals are used in a DQL statement, allowing
the attacker to modify the DQL statement with valid literals cannot be detected by the DQL parser, it
is your responsibility.

Right: Prepared Statements

You should always use prepared statements to execute your queries. Prepared statements is a two-step
procedure, separating the SQL query from the parameters. They are supported (and encouraged) for both
DBAL SQL queries and for ORM DQL queries.

Instead of using string concatenation to insert user-input into your SQL/DQL statements you just specify
placeholders and then explain to the database driver which variable should be bound to
which placeholder. Each database vendor supports different placeholder styles:

	All PDO Drivers support positional (using question marks) and named placeholders (e.g. :param1, :foo).

	OCI8 only supports named parameters, but Doctrine DBAL has a thin layer around OCI8 and
also allows positional placeholders.

	Doctrine ORM DQL allows both named and positional parameters. The positional parameters however are not
just question marks, but suffixed with a number (?1, ?2, ?3, …).

Following are examples of using prepared statements with SQL and DQL:

<?php
// SQL Prepared Statements: Positional
$sql = "SELECT * FROM users WHERE username = ?";
$stmt = $connection->prepare($sql);
$stmt->bindValue(1, $_GET['username']);
$resultSet = $stmt->executeQuery();

// SQL Prepared Statements: Named
$sql = "SELECT * FROM users WHERE username = :user";
$stmt = $connection->prepare($sql);
$stmt->bindValue("user", $_GET['username']);
$resultSet = $stmt->executeQuery();

// DQL Prepared Statements: Positional
$dql = "SELECT u FROM User u WHERE u.username = ?1";
$query = $em->createQuery($dql);
$query->setParameter(1, $_GET['username']);
$data = $query->getResult();

// DQL Prepared Statements: Named
$dql = "SELECT u FROM User u WHERE u.username = :name";
$query = $em->createQuery($dql);
$query->setParameter("name", $_GET['username']);
$data = $query->getResult();

You can see this is a bit more tedious to write, but this is the only way to write secure queries. If you
are using just the DBAL there are also helper methods which simplify the usage quite a lot:

<?php
// bind parameters and execute query at once.
$sql = "SELECT * FROM users WHERE username = ?";
$resultSet = $connection->executeQuery($sql, [$_GET['username']]);

There is also executeStatement which does not return a statement but the number of affected rows.

Besides binding parameters you can also pass the type of the variable. This allows Doctrine or the underlying
vendor to not only escape but also cast the value to the correct type. See the docs on querying and DQL in the
respective chapters for more information.

Discouraged: Quoting/Escaping values

Previously we said string concatenation is wrong. There is a way to do it technically correctly using
the Connection#quote method:

<?php
// Parameter quoting
$sql = "SELECT * FROM users WHERE name = " . $connection->quote($_GET['username']);

This method is only available for SQL, not for DQL. For DQL you are always encouraged to use prepared
statements not only for security, but also for caching reasons. To insert a string literal into DDL,
use AbstractPlatform::quoteStringLiteral().

Supporting Other Databases

To support a database which is not currently shipped with Doctrine
you have to implement the following interfaces and abstract
classes:

	\Doctrine\DBAL\Driver\Connection

	\Doctrine\DBAL\Driver\Statement

	\Doctrine\DBAL\Driver

	\Doctrine\DBAL\Platforms\AbstractPlatform

	\Doctrine\DBAL\Schema\AbstractSchemaManager

For an already supported platform but unsupported driver you only
need to implement the first three interfaces, since the SQL
Generation and Schema Management is already supported by the
respective platform and schema instances. You can also make use of
several Abstract unit tests in the \Doctrine\DBAL\Tests package
to check if your platform behaves like all the others which is
necessary for SchemaTool support, namely:

	\Doctrine\DBAL\Tests\Platforms\AbstractPlatformTestCase

	\Doctrine\DBAL\Tests\Functional\Schema\AbstractSchemaManagerTestCase

We would be very happy if any support for new databases would be
contributed back to Doctrine to make it an even better product.

Implementation Steps in Detail

	Add your driver shortcut to the Doctrine\DBAL\DriverManager class.

	Make a copy of tests/dbproperties.xml.dev and adjust the values to your driver shortcut and testdatabase.

	Create three new classes implementing \Doctrine\DBAL\Driver\Connection, \Doctrine\DBAL\Driver\Statement
and Doctrine\DBAL\Driver. You can take a look at the Doctrine\DBAL\Driver\OCI8 driver.

	You can run the test suite of your new database driver by calling phpunit. You can set your own settings in the phpunit.xml file.

	Start implementing AbstractPlatform and AbstractSchemaManager. Other implementations should serve as good examples.

Testing Guidelines

To ensure high quality, all components of the Doctrine DBAL library are extensively covered with tests.

Having the code covered with tests and running all tests against each individual code change helps prevent
breakages of the library logic when its code changes.

Additionally, when code changes are accompanied by new tests, the tests:

	Help understand what problem the given code change is trying to solve.

	Make sure that the problem being solved needs to be solved in the DBAL.

	Document the proper usage of the DBAL APIs.

Requirements

	Each pull request that adds new or changes the existing logic must have tests.

Note

Modifications to the keyword lists under the Doctrine\DBAL\Platforms\Keywords namespace
don’t have to be covered with tests.

	The test that covers certain logic must fail without this logic implemented.

Types of Tests

Doctrine DBAL primarily uses unit and integration tests.

Unit Tests

Unit tests are meant to cover the logic of a given unit (e.g. a class or a method) including the logic
of its interaction with other units. In this case, the other units could be mocked.

Unit tests are most welcomed for testing the logic that the DBAL itself defines (e.g. logging, caching, data types).

In this case, the DBAL is the source of truth about what this logic is and the test plays the role of its description.

Integration Tests

Integration (a.k.a. functional) tests are required when the behavior under test is dictated by the logic
defined outside of the DBAL. It could be:

	The underlying database platform.

	The underlying database driver.

	SQL syntax and the standard as such.

It is important to have integration tests for the cases above. Unlike unit tests, they make the external components
the source of truth and help make sure that the logic implemented in the DBAL is correct even if the external components
change (e.g. a new version of a database platform is supported).

When are Integration Tests not Required?

Some cases cannot be reproduced with the existing integration testing suite. It could be the scenarios that involve
multiple concurrent database connections, transactions, locking, performance-related issues, etc.

In such cases, it is still important that a pull request fixing the issues is accompanied by a free-form reproducer
that demonstrates the issue being fixed.

Recommendations on Writing Tests

Tests in Doctrine DBAL are located under the tests directory and implemented on top of PHPUnit. Use its
documentation [https://phpunit.de/documentation.html] to get started.

Writing Integration Tests

Integration tests are located under the tests/Doctrine/Tests/DBAL/Functional directory. Unlike unit tests,
they require a real database connection to test their logic against.

It is recommended to use Doctrine\DBAL\Tests\FunctionalTestCase as the base class for integration tests.
Based on the configuration, it will automatically create and connect to the test database.

Data Fixtures in Integration Tests

To test selecting and fetching data from the database, the test may create the necessary schema and populate it
with the test data. To create database tables, instead of checking if the table exists and reusing it,
it is recommended to use FunctionalTestCase::dropAndCreateTable(). This way, the table will be dropped and created every time
providing better isolation between the test runs.

Testing Different Database Platforms

Although most of the issues are originally discovered on a specific database platform,
the integration tests for all issues should be implemented by default at the database abstraction level
and run against all the platforms that support the API being tested.

This allows us to ensure that the same scenario that was found failing on one platform also works on others. Or otherwise,
the same issue could be reproduced on the platforms where it wasn’t originally tested.

If the newly added test fails on other platforms, and fixing it is out of the scope, the test can be explicitly marked
as incomplete which will identify the issue.

Examples of such tests could be found under the Doctrine\DBAL\Tests\Functional\Platform namespace.

Using Unit and Integration Tests Together

For example, the AbstractPlatform::modifyLimitQuery() method has both unit and integration tests.

	Unit test cases for each platform (Doctrine\DBAL\Tests\Platforms*PlatformTest) have a test that calls
$platform->modifyLimitQuery() and asserts that the resulting SQL looks as expected.
These tests cannot guarantee that the generated SQL is valid syntactically and semantically but they guarantee
that the code works as designed. They provide fast feedback because they don’t require a database connection
and can test all platforms in a single test suite run.

	There is an integration test Doctrine\DBAL\Tests\Functional\ModifyLimitQueryTest which calls
$platform->modifyLimitQuery() and executes the generated queries on a real database to which the test suite
is connected. This test guarantees that the generated queries are valid but it’s much slower and works
only with one database at a time.

As you can see, both approaches have their strengths and weaknesses and can complement each other.

Warning

Do not mix the unit and the integration approaches in one test. Each of the approaches has its area of application
and purpose. Mixing them makes it harder to identify the reason and the impact of a failing mixed-type test.

Transactions

A Doctrine\DBAL\Connection provides an API for
transaction management, with the methods
beginTransaction(), commit() and rollBack().

Transaction demarcation with the Doctrine DBAL looks as follows:

<?php
$conn->beginTransaction();
try{
 // do stuff
 $conn->commit();
} catch (\Exception $e) {
 $conn->rollBack();
 throw $e;
}

Alternatively, the control abstraction
Connection#transactional($func) can be used to make the code
more concise and to make sure you never forget to rollback the
transaction in the case of an exception. The following code snippet
is functionally equivalent to the previous one:

<?php
$conn->transactional(function(Connection $conn): void {
 // do stuff
});

Note that the closure above doesn’t have to be a void, anything it
returns will be returned by transactional():

<?php
$one = $conn->transactional(function(Connection $conn): int {
 // do stuff
 return $conn->fetchOne('SELECT 1');
});

The Doctrine\DBAL\Connection class also has methods to control the
transaction isolation level as supported by the underlying
database. Connection#setTransactionIsolation($level) and
Connection#getTransactionIsolation() can be used for that purpose.
The possible isolation levels are represented by the following
constants:

<?php
TransactionIsolationLevel::READ_UNCOMMITTED
TransactionIsolationLevel::READ_COMMITTED
TransactionIsolationLevel::REPEATABLE_READ
TransactionIsolationLevel::SERIALIZABLE

The default transaction isolation level of a
Doctrine\DBAL\Connection instance is chosen by the underlying
platform but it is always at least READ_COMMITTED.

Transaction Nesting

Calling beginTransaction() while already in a transaction will
result in two very different behaviors depending on whether transaction
nesting with savepoints is enabled or not. In both cases though, there
won’t be an actual transaction inside a transaction, even if your RDBMS
supports it. There is always only a single, real database transaction.

By default, transaction nesting at the SQL level with savepoints is
disabled. The value for that setting can be set on a per-connection
basis, with
Doctrine\DBAL\Connection#setNestTransactionsWithSavepoints().

Dummy mode

When transaction nesting with savepoints is disabled, what happens is
not so much transaction nesting as propagating transaction control up
the call stack. For that purpose, the Connection class keeps an
internal counter that represents the nesting level and is
increased/decreased as beginTransaction(), commit() and
rollBack() are invoked. beginTransaction() increases the nesting
level whilst commit() and rollBack() decrease the nesting level.
The nesting level starts at 0.
Whenever the nesting level transitions from 0 to 1,
beginTransaction() is invoked on the underlying driver connection
and whenever the nesting level transitions from 1 to 0, commit() or
rollBack() is invoked on the underlying driver, depending on whether
the transition was caused by Connection#commit() or
Connection#rollBack().

What this means is that transaction control is basically passed to
code higher up in the call stack and the inner transaction block does
not actually result in an SQL transaction. It is not ignored either
though.

To visualize what this means in practice, consider the following
example:

<?php
// $conn instanceof Doctrine\DBAL\Connection
$conn->beginTransaction(); // 0 => 1, "real" transaction started
try {

 ...

 // nested transaction block, this might be in some other API/library code that is
 // unaware of the outer transaction.
 $conn->beginTransaction(); // 1 => 2
 try {
 ...

 $conn->commit(); // 2 => 1
 } catch (\Exception $e) {
 $conn->rollBack(); // 2 => 1, transaction marked for rollback only
 throw $e;
 }

 ...

 $conn->commit(); // 1 => 0, "real" transaction committed
} catch (\Exception $e) {
 $conn->rollBack(); // 1 => 0, "real" transaction rollback
 throw $e;
}

However, a rollback in a nested transaction block will always mark the
current transaction so that the only possible outcome of the transaction
is to be rolled back.
That means in the above example, the rollback in the inner
transaction block marks the whole transaction for rollback only.
Even if the nested transaction block would not rethrow the
exception, the transaction is marked for rollback only and the
commit of the outer transaction would trigger an exception, leading
to the final rollback. This also means that you cannot
successfully commit some changes in an outer transaction if an
inner transaction block fails and issues a rollback, even if this
would be the desired behavior (i.e. because the nested operation is
“optional” for the purpose of the outer transaction block). To
achieve that, you need to resort to transaction nesting with savepoint.

All that is guaranteed to the inner transaction is that it still
happens atomically, all or nothing, the transaction just gets a
wider scope and the control is handed to the outer scope.

Note

The transaction nesting described here is a debated
feature that has its critics. Form your own opinion. We recommend
avoiding nesting transaction blocks when possible, and most of the
time, it is possible. Transaction control should mostly be left to
a service layer and not be handled in data access objects or
similar.

Warning

Directly invoking PDO::beginTransaction(),
PDO::commit() or PDO::rollBack() or the corresponding methods
on the particular Doctrine\DBAL\Driver\Connection instance
bypasses the transparent transaction nesting that is provided
by Doctrine\DBAL\Connection and can therefore corrupt the
nesting level, causing errors with broken transaction boundaries
that may be hard to debug.

Emulated Transaction Nesting with Savepoints

Let’s now examine what happens when transaction nesting with savepoints
is enabled, with the same example as above

<?php
// $conn instanceof Doctrine\DBAL\Connection
$conn->beginTransaction(); // 0 => 1, "real" transaction started
try {

 ...

 // nested transaction block, this might be in some other API/library code that is
 // unaware of the outer transaction.
 $conn->beginTransaction(); // 1 => 2, savepoint created
 try {
 ...

 $conn->commit(); // 2 => 1
 } catch (\Exception $e) {
 $conn->rollBack(); // 2 => 1, rollback to savepoint
 throw $e;
 }

 ...

 $conn->commit(); // 1 => 0, "real" transaction committed
} catch (\Exception $e) {
 $conn->rollBack(); // 1 => 0, "real" transaction rollback
 throw $e;
}

This time, everything is handled at the SQL level: the main transaction
is not marked for rollback only, but the inner emulated transaction is
rolled back to the savepoint.

Auto-commit mode

A Doctrine\DBAL\Connection supports setting the auto-commit mode
to control whether queries should be automatically wrapped into a
transaction or directly be committed to the database.
By default a connection runs in auto-commit mode which means
that it is non-transactional unless you start a transaction explicitly
via beginTransaction(). To have a connection automatically open up
a new transaction on connect() and after commit() or rollBack(),
you can disable auto-commit mode with setAutoCommit(false).

<?php
// define connection parameters $params and initialize driver $driver

$conn = new \Doctrine\DBAL\Connection($params, $driver);

$conn->setAutoCommit(false); // disables auto-commit
$conn->connect(); // connects and immediately starts a new transaction

try {
 // do stuff
 $conn->commit(); // commits transaction and immediately starts a new one
} catch (\Exception $e) {
 $conn->rollBack(); // rolls back transaction and immediately starts a new one
}

// still transactional

Note

Changing auto-commit mode during an active transaction, implicitly
commits active transactions for that particular connection.

<?php
// define connection parameters $params and initialize driver $driver

$conn = new \Doctrine\DBAL\Connection($params, $driver);

// we are in auto-commit mode
$conn->beginTransaction();

// disable auto-commit, commits currently active transaction
$conn->setAutoCommit(false); // also causes a new transaction to be started

// no-op as auto-commit is already disabled
$conn->setAutoCommit(false);

// enable auto-commit again, commits currently active transaction
$conn->setAutoCommit(true); // does not start a new transaction automatically

Committing or rolling back an active transaction will of course only
open up a new transaction automatically if the particular action causes
the transaction context of a connection to terminate.
That means committing or rolling back nested transactions are not affected
by this behaviour.

<?php
// we are not in auto-commit mode, transaction is active

try {
 // do stuff

 $conn->beginTransaction(); // start inner transaction, nesting level 2

 try {
 // do stuff
 $conn->commit(); // commits inner transaction, does not start a new one
 } catch (\Exception $e) {
 $conn->rollBack(); // rolls back inner transaction, does not start a new one
 }

 // do stuff

 $conn->commit(); // commits outer transaction, and immediately starts a new one
} catch (\Exception $e) {
 $conn->rollBack(); // rolls back outer transaction, and immediately starts a new one
}

To initialize a Doctrine\DBAL\Connection with auto-commit disabled,
you can also use the Doctrine\DBAL\Configuration container to modify the
default auto-commit mode via Doctrine\DBAL\Configuration::setAutoCommit(false)
and pass it to a Doctrine\DBAL\Connection when instantiating.

Error handling

In order to handle errors related to deadlocks or lock wait timeouts,
you can use Doctrine built-in transaction exceptions.
All transaction exceptions where retrying makes sense have a marker interface: Doctrine\DBAL\Exception\RetryableException.
A practical example is as follows:

<?php

try {
 // process stuff
} catch (\Doctrine\DBAL\Exception\RetryableException $e) {
 // retry the processing
}

If you need stricter control, you can catch the concrete exceptions directly:

	Doctrine\DBAL\Exception\DeadlockException: this can happen when each member
of a group of actions is waiting for some other member to release a shared lock.

	Doctrine\DBAL\Exception\LockWaitTimeoutException: this exception happens when
a transaction has to wait a considerable amount of time to obtain a lock, even if
a deadlock is not involved.

Types

Besides abstraction of SQL one needs a translation between database
and PHP data-types to implement database independent applications.
Doctrine DBAL has a type translation system baked in that supports the
conversion from and to PHP values from any database platform,
as well as platform independent SQL generation for any Doctrine
Type.

Using the ORM you generally don’t need to know about the Type
system. This is unless you want to make use of database vendor
specific database types not included in Doctrine DBAL.

Types are flyweights. This means there is only ever one instance of
a type and it is not allowed to contain any state. Creation of type
instances is abstracted through a static get method
Doctrine\DBAL\Types\Type::getType().

Types are abstracted across all the supported database
vendors.

Reference

The following chapter gives an overview of all available Doctrine DBAL
types with short explanations on their context and usage.
The type names listed here equal those that can be passed to the
Doctrine\DBAL\Types\Type::getType() factory method in order to retrieve
the desired type instance.

<?php

// Returns instance of \Doctrine\DBAL\Types\IntegerType
$type = \Doctrine\DBAL\Types\Type::getType('integer');

Numeric types

Types that map numeric data such as integers, fixed and floating point
numbers.

Integer types

Types that map numeric data without fractions.

smallint

Maps and converts 2-byte integer values.
Unsigned integer values have a range of 0 to 65535 while signed
integer values have a range of −32768 to 32767.
If you know the integer data you want to store always fits into one of these ranges
you should consider using this type.
Values retrieved from the database are always converted to PHP’s integer type
or null if no data is present.

Note

Not all of the database vendors support unsigned integers, so such an assumption
might not be propagated to the database.

integer

Maps and converts 4-byte integer values.
Unsigned integer values have a range of 0 to 4294967295 while signed
integer values have a range of −2147483648 to 2147483647.
If you know the integer data you want to store always fits into one of these ranges
you should consider using this type.
Values retrieved from the database are always converted to PHP’s integer type
or null if no data is present.

Note

Not all of the database vendors support unsigned integers, so such an assumption
might not be propagated to the database.

bigint

Maps and converts 8-byte integer values.
Unsigned integer values have a range of 0 to 18446744073709551615 while signed
integer values have a range of −9223372036854775808 to 9223372036854775807.
If you know the integer data you want to store always fits into one of these ranges
you should consider using this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Note

For compatibility reasons this type is not converted to an integer
as PHP can only represent big integer values as real integers on
systems with a 64-bit architecture and would fall back to approximated
float values otherwise which could lead to false assumptions in applications.

Not all of the database vendors support unsigned integers, so such an assumption
might not be propagated to the database.

Decimal types

Types that map numeric data with fractions.

decimal

Maps and converts numeric data with fixed-point precision.
If you need an exact precision for numbers with fractions, you should consider using
this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Note

For compatibility reasons this type is not converted to a double
as PHP can only preserve the precision to a certain degree. Otherwise
it approximates precision which can lead to false assumptions in
applications.

float

Maps and converts numeric data with floating-point precision.
If you only need an approximate precision for numbers with fractions, you should
consider using this type.
Values retrieved from the database are always converted to PHP’s
float/double type or null if no data is present.

String types

Types that map string data such as character and binary text.

Character string types

Types that map string data of letters, numbers, and other symbols.

string

Maps and converts string data with a maximum length.
If you know that the data to be stored always fits into the specified length,
you should consider using this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Note

Database vendors have different limits for the maximum length of a
varying string. Doctrine internally maps the string type to the
vendor’s text type if the maximum allowed length is exceeded.
This can lead to type inconsistencies when reverse engineering the
type from the database.

ascii_string

Similar to the string type but for binding non-unicode data. This type
should be used with database vendors where a binding type mismatch
can trigger an implicit cast and lead to performance problems.

text

Maps and converts string data without a maximum length.
If you don’t know the maximum length of the data to be stored, you should
consider using this type.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

guid

Maps and converts a “Globally Unique Identifier”.
If you want to store a GUID, you should consider using this type, as some
database vendors have a native data type for this kind of data which offers
the most efficient way to store it. For vendors that do not support this
type natively, this type is mapped to the string type internally.
Values retrieved from the database are always converted to PHP’s string type
or null if no data is present.

Binary string types

Types that map binary string data including images and other types of
information that are not interpreted by the database.
If you know that the data to be stored always is in binary format, you
should consider using one of these types in favour of character string
types, as it offers the most efficient way to store it.

binary

Maps and converts binary string data with a maximum length.
If you know that the data to be stored always fits into the specified length,
you should consider using this type.
Values retrieved from the database are always converted to PHP’s resource type
or null if no data is present.

Note

Database vendors have different limits for the maximum length of a
varying binary string. Doctrine internally maps the binary type to the
vendor’s blob type if the maximum allowed length is exceeded.
This can lead to type inconsistencies when reverse engineering the
type from the database.

blob

Maps and converts binary string data without a maximum length.
If you don’t know the maximum length of the data to be stored, you should
consider using this type.
Values retrieved from the database are always converted to PHP’s resource type
or null if no data is present.

Bit types

Types that map bit data such as boolean values.

boolean

Maps and converts boolean data.
If you know that the data to be stored always is a boolean (true or false),
you should consider using this type.
Values retrieved from the database are always converted to PHP’s boolean type
or null if no data is present.

Note

As most of the database vendors do not have a native boolean type,
this type silently falls back to the smallest possible integer or
bit data type if necessary to ensure the least possible data storage
requirements are met.

Date and time types

Types that map date, time and timezone related values such as date only,
date and time, date, time and timezone or time only.

date

Maps and converts date data without time and timezone information.
If you know that the data to be stored always only needs to be a date
without time and timezone information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

date_immutable

The immutable variant of the date type.
Values retrieved from the database are always converted to PHP’s \DateTimeImmutable
object or null if no data is present.

datetime

Maps and converts date and time data without timezone information.
If you know that the data to be stored always only needs to be a date
with time but without timezone information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

Warning

Before 2.5 this type always required a specific format,
defined in $platform->getDateTimeFormatString(), which
could cause quite some troubles on platforms that had various
microtime precision formats.
Starting with 2.5 whenever the parsing of a date fails with
the predefined platform format, the date_create()
function will be used to parse the date.

This could cause some troubles when your date format is weird
and not parsed correctly by date_create(), however since
databases are rather strict on dates there should be no problem.

datetime_immutable

The immutable variant of the datetime type.
Values retrieved from the database are always converted to PHP’s \DateTimeImmutable
object or null if no data is present.

datetimetz

Maps and converts date with time and timezone information data.
If you know that the data to be stored always contains date, time and timezone
information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

datetimetz_immutable

The immutable variant of the datetimetz type.
Values retrieved from the database are always converted to PHP’s \DateTimeImmutable
object or null if no data is present.

time

Maps and converts time data without date and timezone information.
If you know that the data to be stored only needs to be a time
without date, time and timezone information, you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateTime object
or null if no data is present.

time_immutable

The immutable variant of the time type.
Values retrieved from the database are always converted to PHP’s \DateTimeImmutable
object or null if no data is present.

dateinterval

Maps and converts date and time difference data without timezone information.
If you know that the data to be stored is the difference between two date and time values,
you should consider using this type.
Values retrieved from the database are always converted to PHP’s \DateInterval object
or null if no data is present.

Note

See the Known Vendor Issue Known Vendor Issues section
for details about the different handling of microseconds and
timezones across all the different vendors.

Warning

All date types assume that you are exclusively using the default timezone
set by date_default_timezone_set() [http://docs.php.net/manual/en/function.date-default-timezone-set.php]
or by the php.ini configuration date.timezone.

If you need specific timezone handling you have to handle this
in your domain, converting all the values back and forth from UTC.

Array types

Types that map array data in different variations such as simple arrays,
real arrays or JSON format arrays.

array

Maps and converts array data based on PHP serialization.
If you need to store an exact representation of your array data,
you should consider using this type as it uses serialization
to represent an exact copy of your array as string in the database.
Values retrieved from the database are always converted to PHP’s array type
using deserialization or null if no data is present.

Note

This type will always be mapped to the database vendor’s text type
internally as there is no way of storing a PHP array representation
natively in the database.
Furthermore this type requires an SQL column comment hint so that it can be
reverse engineered from the database. Doctrine cannot map back this type
properly on vendors not supporting column comments and will fall back to
text type instead.

simple_array

Maps and converts array data based on PHP comma delimited imploding and exploding.
If you know that the data to be stored always is a scalar value based one-dimensional
array, you should consider using this type as it uses simple PHP imploding and
exploding techniques to serialize and deserialize your data.
Values retrieved from the database are always converted to PHP’s array type
using comma delimited explode() or null if no data is present.

Note

This type will always be mapped to the database vendor’s text type
internally as there is no way of storing a PHP array representation
natively in the database.
Furthermore this type requires an SQL column comment hint so that it can be
reverse engineered from the database. Doctrine cannot map back this type
properly on vendors not supporting column comments and will fall back to
text type instead.

Warning

You should never rely on a specific PHP type like boolean,
integer, float or null when retrieving values from
the database as the explode() deserialization technique used
by this type converts every single array item to string.
This basically means that every array item other than string
will lose its type awareness.

json

Maps and converts array data based on PHP’s JSON encoding functions.
If you know that the data to be stored always is in a valid UTF-8
encoded JSON format string, you should consider using this type.
Values retrieved from the database are always converted to PHP’s
native types using PHP’s json_decode() function.
JSON objects are always converted to PHP associative arrays.

Note

The json type doesn’t preserve the type of PHP objects.
PHP objects will always be encoded as (anonymous) JSON objects.
JSON objects will always be decoded as PHP associative arrays.

To preserve the type of PHP objects, consider using
Doctrine JSON ODM [https://github.com/dunglas/doctrine-json-odm].

Note

Some vendors have a native JSON type and Doctrine will use it if possible
and otherwise silently fall back to the vendor’s text type to ensure
the most efficient storage requirements.
If the vendor does not have a native JSON type, this type requires an SQL
column comment hint so that it can be reverse engineered from the database.
Doctrine cannot map back this type properly on vendors not supporting column
comments and will fall back to text type instead.

Warning

You should never rely on the order of your JSON object keys, as some vendors
like MySQL sort the keys of its native JSON type using an internal order
which is also subject to change.

Object types

Types that map to objects such as POPOs.

object

Maps and converts object data based on PHP serialization.
If you need to store an exact representation of your object data,
you should consider using this type as it uses serialization
to represent an exact copy of your object as string in the database.
Values retrieved from the database are always converted to PHP’s object type
using deserialization or null if no data is present.

Note

This type will always be mapped to the database vendor’s text type
internally as there is no way of storing a PHP object representation
natively in the database.
Furthermore this type requires an SQL column comment hint so that it can be
reverse engineered from the database. Doctrine cannot map back this type
properly on vendors not supporting column comments and will fall back to
text type instead.

Warning

While the built-in text type of MySQL and MariaDB can store binary data,
mysqldump cannot properly export text fields containing binary data.
This will cause creating and restoring of backups fail silently. A workaround is
to serialize()/unserialize() and base64_encode()/base64_decode()
PHP objects and store them into a text field manually.

Warning

Because the built-in text type of PostgreSQL does not support NULL bytes,
the object type will cause deserialization errors on PostgreSQL. A workaround is
to serialize()/unserialize() and base64_encode()/base64_decode() PHP objects and store
them into a text field manually.

Mapping Matrix

The following table shows an overview of Doctrine’s type abstraction.
The matrix contains the mapping information for how a specific Doctrine
type is mapped to the database and back to PHP.
Please also notice the mapping specific footnotes for additional information.

+-------------------+---------------+---+
| Doctrine | PHP | Database vendor |
| | +--------------------------+---------+--+
| | | Name | Version | Type |
+===================+===============+==========================+=========+==+
| **smallint** | ``integer`` | **MySQL** | *all* | ``SMALLINT`` ``UNSIGNED`` [10] ``AUTO_INCREMENT`` [11] |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``SMALLINT`` |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``NUMBER(5)`` |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``SMALLINT`` ``IDENTITY`` [11] |
| | +--------------------------+---------+--+
| | | **SQLite** | *all* | ``INTEGER`` [15] |
+-------------------+---------------+--------------------------+---------+--+
| **integer** | ``integer`` | **MySQL** | *all* | ``INT`` ``UNSIGNED`` [10] ``AUTO_INCREMENT`` [11] |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``INT`` [12] |
| | | | +--+
| | | | | ``SERIAL`` [11] |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``NUMBER(10)`` |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``INT`` ``IDENTITY`` [11] |
| | +--------------------------+---------+--+
| | | **SQLite** | *all* | ``INTEGER`` [15] |
+-------------------+---------------+--------------------------+---------+--+
| **bigint** | ``string`` | **MySQL** | *all* | ``BIGINT`` ``UNSIGNED`` [10] ``AUTO_INCREMENT`` [11] |
| | [8] +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``BIGINT`` [12] |
| | | | +--+
| | | | | ``BIGSERIAL`` [11] |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``NUMBER(20)`` |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``BIGINT`` ``IDENTITY`` [11] |
| | +--------------------------+---------+--+
| | | **SQLite** | *all* | ``INTEGER`` [15] |
+-------------------+---------------+--------------------------+---------+--+
| **decimal** [7] | ``string`` | **MySQL** | *all* | ``NUMERIC(p, s)`` ``UNSIGNED`` [10] |
| | [9] +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``NUMERIC(p, s)`` |
| | +--------------------------+ | |
| | | **Oracle** | | |
| | +--------------------------+ | |
| | | **SQL Server** | | |
| | +--------------------------+ | |
| | | **SQLite** | | |
+-------------------+---------------+--------------------------+---------+--+
| **float** | ``float`` | **MySQL** | *all* | ``DOUBLE PRECISION`` ``UNSIGNED`` [10] |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``DOUBLE PRECISION`` |
| | +--------------------------+ | |
| | | **Oracle** | | |
| | +--------------------------+ | |
| | | **SQL Server** | | |
| | +--------------------------+ | |
| | | **SQLite** | | |
+-------------------+---------------+--------------------------+---------+--+
| **string** | ``string`` | **MySQL** | *all* | ``VARCHAR(n)`` [3] |
| [2] [5] | +--------------------------+ | |
| | | **PostgreSQL** | | |
| | +--------------------------+ +--+
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``VARCHAR2(n)`` [3] |
| | | | +--+
| | | | | ``CHAR(n)`` [4] |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``NVARCHAR(n)`` [3] |
| | | | +--+
| | | | | ``NCHAR(n)`` [4] |
+-------------------+---------------+--------------------------+---------+--+
| **ascii_string** | ``string`` | **SQL Server** | | ``VARCHAR(n)`` |
| | | | | ``CHAR(n)`` |
+-------------------+---------------+--------------------------+---------+--+
| **text** | ``string`` | **MySQL** | *all* | ``TINYTEXT`` [16] |
| | | | +--+
| | | | | ``TEXT`` [17] |
| | | | +--+
| | | | | ``MEDIUMTEXT`` [18] |
| | | | +--+
| | | | | ``LONGTEXT`` [19] |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``TEXT`` |
| | +--------------------------+ | |
| | | **Oracle** | *all* | ``CLOB`` |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``VARCHAR(MAX)`` |
+-------------------+---------------+--------------------------+---------+--+
| **guid** | ``string`` | **MySQL** | *all* | ``CHAR(36)`` [1] |
| | +--------------------------+ | |
| | | **Oracle** | | |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``UNIQUEIDENTIFIER`` |
| | +--------------------------+ | |
| | | **PostgreSQL** | *all* | ``UUID`` |
+-------------------+---------------+--------------------------+---------+--+
| **binary** | ``resource`` | **MySQL** | *all* | ``VARBINARY(n)`` [3] |
| [2] [6] | +--------------------------+ | |
| | | **SQL Server** | +--+
| | +--------------------------+ | ``BINARY(n)`` [4] |
| | | **Oracle** | *all* | ``RAW(n)`` |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``BYTEA`` [15] |
| | +--------------------------+---------+--+
| | | **SQLite** | *all* | ``BLOB`` [15] |
+-------------------+---------------+--------------------------+---------+--+
| **blob** | ``resource`` | **MySQL** | *all* | ``TINYBLOB`` [16] |
| | | | +--+
| | | | | ``BLOB`` [17] |
| | | | +--+
| | | | | ``MEDIUMBLOB`` [18] |
| | | | +--+
| | | | | ``LONGBLOB`` [19] |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``BLOB`` |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``VARBINARY(MAX)`` |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``BYTEA`` |
+-------------------+---------------+--------------------------+---------+--+
| **boolean** | ``boolean`` | **MySQL** | *all* | ``TINYINT(1)`` |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``BOOLEAN`` |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``BIT`` |
| | +--------------------------+ | |
| | | **Oracle** | *all* | ``NUMBER(1)`` |
+-------------------+---------------+--------------------------+---------+--+
| **date** | ``\DateTime`` | **MySQL** | *all* | ``DATE`` |
| | +--------------------------+ | |
| | | **PostgreSQL** | | |
| | +--------------------------+ | |
| | | **Oracle** | | |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+ |
| | | **SQL Server** | "all" | |
+-------------------+---------------+--------------------------+---------+--+
| **datetime** | ``\DateTime`` | **MySQL** | *all* | ``DATETIME`` [13] |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``DATETIME`` |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``TIMESTAMP(0) WITHOUT TIME ZONE`` |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``TIMESTAMP(0)`` |
+-------------------+---------------+--------------------------+---------+--+
| **datetimetz** | ``\DateTime`` | **MySQL** | *all* | ``DATETIME`` [14] [15] |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+ |
| | | **SQL Server** | "all" | |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``TIMESTAMP(0) WITH TIME ZONE`` |
| | +--------------------------+ | |
| | | **Oracle** | | |
+-------------------+---------------+--------------------------+---------+--+
| **time** | ``\DateTime`` | **MySQL** | *all* | ``TIME`` |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``TIME(0) WITHOUT TIME ZONE`` |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``DATE`` [15] |
| | +--------------------------+---------+--+
| | | **SQL Server** | "all" | ``TIME(0)`` |
+-------------------+---------------+--------------------------+---------+--+
| **array** [1] | ``array`` | **MySQL** | *all* | ``TINYTEXT`` [16] |
+-------------------+ | | +--+
| **simple array** | | | | ``TEXT`` [17] |
| [1] | | | +--+
| | | | | ``MEDIUMTEXT`` [18] |
| | | | +--+
| | | | | ``LONGTEXT`` [19] |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``TEXT`` |
| | +--------------------------+ | |
| | | **Oracle** | *all* | ``CLOB`` |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``VARCHAR(MAX)`` |
+-------------------+---------------+--------------------------+---------+--+
| **json** | ``mixed`` | **MySQL** | *all* | ``JSON`` |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``JSON`` [20] |
| | | | +--+
| | | | | ``JSONB`` [21] |
| | +--------------------------+---------+--+
| | | **Oracle** | *all* | ``CLOB`` [1] |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``VARCHAR(MAX)`` [1] |
+-------------------+---------------+--------------------------+---------+--+
| **object** [1] | ``object`` | **MySQL** | *all* | ``TINYTEXT`` [16] |
| | | | +--+
| | | | | ``TEXT`` [17] |
| | | | +--+
| | | | | ``MEDIUMTEXT`` [18] |
| | | | +--+
| | | | | ``LONGTEXT`` [19] |
| | +--------------------------+---------+--+
| | | **PostgreSQL** | *all* | ``TEXT`` |
| | +--------------------------+ | |
| | | **Oracle** | *all* | ``CLOB`` |
| | +--------------------------+ | |
| | | **SQLite** | | |
| | +--------------------------+---------+--+
| | | **SQL Server** | *all* | ``VARCHAR(MAX)`` |
+-------------------+---------------+--------------------------+---------+--+

Notes

	[1] Requires hint in the column comment for proper reverse engineering of the appropriate
Doctrine type mapping.

	[2] n is the length attribute set in the column definition (defaults to 255 if omitted).

	[3] Chosen if the column definition has the fixed attribute set to false (default).

	[4] Chosen if the column definition has the fixed attribute set to true.

	[5] Silently maps to the vendor specific text type if the given length attribute for
n exceeds the maximum length the related platform allows. If this is the case, please
see [15] .

	[6] Silently maps to the vendor specific blob type if the given length attribute for
n exceeds the maximum length the related platform allows. If this is the case, please
see [15] .

	[7] p is the precision and s the scale set in the column definition.
The precision defaults to 10 and the scale to 0 if not set.

	[8] Returns PHP string type value instead of integer because of maximum integer value
implications on non 64bit platforms.

	[9] Returns PHP string type value instead of double because of PHP’s limitation in
preserving the exact precision when casting to double.

	[10] Used if unsigned attribute is set to true in the column definition (default false).

	[11] Used if autoincrement attribute is set to true in the column definition (default false).

	[12] Chosen if the column definition has the autoincrement attribute set to false (default).

	[13] Chosen if the column definition does not contain the version option inside the platformOptions
attribute array or is set to false which marks it as a non-locking information column.

	[14] Fallback type as the vendor does not support a native date time type with timezone information.
This means that the timezone information gets lost when storing a value.

	[15] Cannot be safely reverse engineered to the same Doctrine type as the vendor does not have a
native distinct data type for this mapping. Using this type with this vendor can therefore
have implications on schema comparison (online vs offline schema) and PHP type safety
(data conversion from database to PHP value) because it silently falls back to its
appropriate Doctrine type.

	[16] Chosen if the column length is less or equal to 2 ^ 8 - 1 = 255.

	[17] Chosen if the column length is less or equal to 2 ^ 16 - 1 = 65535.

	[18] Chosen if the column length is less or equal to 2 ^ 24 - 1 = 16777215.

	[19] Chosen if the column length is less or equal to 2 ^ 32 - 1 = 4294967295 or empty.

	[20] Chosen if the column definition does not contain the jsonb option inside the platformOptions
attribute array or is set to false.

	[21] Chosen if the column definition contains the jsonb option inside the platformOptions
attribute array and is set to true.

Detection of Database Types

When calling table inspection methods on your connections
SchemaManager instance the retrieved database column types are
translated into Doctrine mapping types. Translation is necessary to
allow database abstraction and metadata comparisons for example for
Migrations or the ORM SchemaTool.

Each database platform has a default mapping of database types to
Doctrine types. You can inspect this mapping for platform of your
choice looking at the
AbstractPlatform::initializeDoctrineTypeMappings()
implementation.

If you want to change how Doctrine maps a database type to a
Doctrine\DBAL\Types\Type instance you can use the
AbstractPlatform::registerDoctrineTypeMapping($dbType, $doctrineType)
method to add new database types or overwrite existing ones.

Note

You can only map a database type to exactly one Doctrine type.
Database vendors that allow to define custom types like PostgreSQL
can help to overcome this issue.

Custom Mapping Types

Just redefining how database types are mapped to all the existing
Doctrine types is not at all that useful. You can define your own
Doctrine Mapping Types by extending Doctrine\DBAL\Types\Type.
You are required to implement 4 different methods to get this
working.

See this example of how to implement a Money object in PostgreSQL.
For this we create the type in PostgreSQL as:

CREATE DOMAIN MyMoney AS DECIMAL(18,3);

Now we implement our Doctrine\DBAL\Types\Type instance:

<?php
namespace My\Project\Types;

use Doctrine\DBAL\Types\Type;
use Doctrine\DBAL\Platforms\AbstractPlatform;

/**
 * My custom datatype.
 */
class MoneyType extends Type
{
 const MONEY = 'money'; // modify to match your type name

 public function getSQLDeclaration(array $fieldDeclaration, AbstractPlatform $platform)
 {
 return 'MyMoney';
 }

 public function convertToPHPValue($value, AbstractPlatform $platform)
 {
 return new Money($value);
 }

 public function convertToDatabaseValue($value, AbstractPlatform $platform)
 {
 return $value->toDecimal();
 }

 public function getName()
 {
 return self::MONEY;
 }
}

The job of Doctrine-DBAL is to transform your type into an SQL
declaration. You can modify the SQL declaration Doctrine will produce.
At first, to enable this feature, you must override the
canRequireSQLConversion method:

<?php
public function canRequireSQLConversion()
{
 return true;
}

Then you override the convertToPhpValueSQL and
convertToDatabaseValueSQL methods :

<?php
public function convertToPHPValueSQL($sqlExpr, $platform)
{
 return 'MyMoneyFunction(\''.$sqlExpr.'\') ';
}

public function convertToDatabaseValueSQL($sqlExpr, AbstractPlatform $platform)
{
 return 'MyFunction('.$sqlExpr.')';
}

Now we have to register this type with the Doctrine Type system and
hook it into the database platform:

<?php
Type::addType('money', 'My\Project\Types\MoneyType');
$conn->getDatabasePlatform()->registerDoctrineTypeMapping('MyMoney', 'money');

This would allow using a money type in the ORM for example and
have Doctrine automatically convert it back and forth to the
database.

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 DBAL Documentation

